135 lines
5.5 KiB
C++
135 lines
5.5 KiB
C++
#include <map>
|
|
#include <vector>
|
|
|
|
#include "cpu_types.hpp"
|
|
|
|
namespace {
|
|
template <typename scalar_t>
|
|
void copy_blocks_cpu_impl(std::vector<torch::Tensor>& key_caches,
|
|
std::vector<torch::Tensor>& value_caches,
|
|
const torch::Tensor& mapping_pairs,
|
|
const int element_num_per_block,
|
|
const int layer_num) {
|
|
const size_t pair_num = mapping_pairs.size(0);
|
|
const size_t block_bytes = sizeof(scalar_t) * element_num_per_block;
|
|
#pragma omp parallel for collapse(2)
|
|
for (int layer = 0; layer < layer_num; ++layer) {
|
|
for (size_t pair = 0; pair < pair_num; ++pair) {
|
|
int64_t source_offset =
|
|
element_num_per_block * mapping_pairs[pair][0].item<int64_t>();
|
|
int64_t target_offset =
|
|
element_num_per_block * mapping_pairs[pair][1].item<int64_t>();
|
|
scalar_t* key_cache_ptr = key_caches[layer].data_ptr<scalar_t>();
|
|
scalar_t* source_ptr = key_cache_ptr + source_offset;
|
|
scalar_t* target_ptr = key_cache_ptr + target_offset;
|
|
std::memcpy(target_ptr, source_ptr, block_bytes);
|
|
|
|
scalar_t* value_cache_ptr = value_caches[layer].data_ptr<scalar_t>();
|
|
source_ptr = value_cache_ptr + source_offset;
|
|
target_ptr = value_cache_ptr + target_offset;
|
|
std::memcpy(target_ptr, source_ptr, block_bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename scalar_t>
|
|
void reshape_and_cache_cpu_impl(
|
|
const scalar_t* __restrict__ key, const scalar_t* __restrict__ value,
|
|
scalar_t* __restrict__ key_cache, scalar_t* __restrict__ value_cache,
|
|
const int64_t* __restrict__ slot_mapping, const int num_tokens,
|
|
const int key_stride, const int value_stride, const int num_heads,
|
|
const int head_size, const int block_size, const int x) {
|
|
const int block_elem_num = num_heads * head_size * block_size;
|
|
|
|
#pragma omp parallel for collapse(2)
|
|
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
|
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
|
const int64_t slot_idx = slot_mapping[token_idx];
|
|
if (slot_idx >= 0) {
|
|
int src_key_head_idx = token_idx * key_stride + head_idx * head_size;
|
|
int src_value_head_idx =
|
|
token_idx * value_stride + head_idx * head_size;
|
|
const scalar_t* src_key_head_ptr = key + src_key_head_idx;
|
|
const scalar_t* src_value_head_ptr = value + src_value_head_idx;
|
|
const int64_t block_index = slot_idx / block_size;
|
|
const int64_t block_offset = slot_idx % block_size;
|
|
scalar_t* target_key_head_ptr = key_cache +
|
|
block_elem_num * block_index +
|
|
head_idx * block_size * head_size;
|
|
scalar_t* target_value_head_ptr = value_cache +
|
|
block_elem_num * block_index +
|
|
head_idx * block_size * head_size;
|
|
|
|
for (int src_key_idx = 0; src_key_idx < head_size; src_key_idx += x) {
|
|
const int64_t target_offset =
|
|
src_key_idx * block_size + block_offset * x;
|
|
for (int i = 0; i < x; ++i) {
|
|
target_key_head_ptr[target_offset + i] =
|
|
src_key_head_ptr[src_key_idx + i];
|
|
}
|
|
}
|
|
|
|
for (int src_value_idx = 0; src_value_idx < head_size;
|
|
++src_value_idx) {
|
|
const int64_t target_offset =
|
|
src_value_idx * block_size + block_offset;
|
|
target_value_head_ptr[target_offset] =
|
|
src_value_head_ptr[src_value_idx];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}; // namespace
|
|
|
|
void copy_blocks(std::vector<torch::Tensor>& key_caches,
|
|
std::vector<torch::Tensor>& value_caches,
|
|
const torch::Tensor& block_mapping) {
|
|
unsigned num_layers = key_caches.size();
|
|
TORCH_CHECK(num_layers == value_caches.size());
|
|
if (num_layers == 0) {
|
|
return;
|
|
}
|
|
|
|
const int element_num_per_block = key_caches[0][0].numel();
|
|
VLLM_DISPATCH_FLOATING_TYPES(
|
|
key_caches[0].scalar_type(), "copy_blocks_cpu_impl", [&] {
|
|
CPU_KERNEL_GUARD_IN(copy_blocks_cpu_impl)
|
|
copy_blocks_cpu_impl<scalar_t>(key_caches, value_caches, block_mapping,
|
|
element_num_per_block, num_layers);
|
|
CPU_KERNEL_GUARD_OUT(copy_blocks_cpu_impl)
|
|
});
|
|
}
|
|
|
|
void reshape_and_cache(torch::Tensor& key, torch::Tensor& value,
|
|
torch::Tensor& key_cache, torch::Tensor& value_cache,
|
|
torch::Tensor& slot_mapping,
|
|
const std::string& kv_cache_dtype, float kv_scale) {
|
|
TORCH_CHECK(kv_scale == 1.0f);
|
|
|
|
int num_tokens = key.size(0);
|
|
int num_heads = key.size(1);
|
|
int head_size = key.size(2);
|
|
int block_size = key_cache.size(3);
|
|
int x = key_cache.size(4);
|
|
|
|
int key_stride = key.stride(0);
|
|
int value_stride = value.stride(0);
|
|
|
|
VLLM_DISPATCH_FLOATING_TYPES(
|
|
key.scalar_type(), "reshape_and_cache_cpu_impl", [&] {
|
|
CPU_KERNEL_GUARD_IN(reshape_and_cache_cpu_impl)
|
|
reshape_and_cache_cpu_impl<scalar_t>(
|
|
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
|
|
key_cache.data_ptr<scalar_t>(), value_cache.data_ptr<scalar_t>(),
|
|
slot_mapping.data_ptr<int64_t>(), num_tokens, key_stride,
|
|
value_stride, num_heads, head_size, block_size, x);
|
|
CPU_KERNEL_GUARD_OUT(reshape_and_cache_cpu_impl)
|
|
});
|
|
}
|
|
|
|
void swap_blocks(torch::Tensor& src, torch::Tensor& dst,
|
|
const torch::Tensor& block_mapping) {
|
|
TORCH_CHECK(false, "swap_blocks is unsupported on CPU.")
|
|
}
|