274 lines
9.7 KiB
Python
274 lines
9.7 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
import torch
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig)
|
|
from vllm.model_executor.parameter import (BasevLLMParameter,
|
|
ChannelQuantScaleParameter,
|
|
GroupQuantScaleParameter,
|
|
PackedvLLMParameter)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
MARLIN_QQQ_TILE = 16
|
|
MARLIN_QQQ_MIN_THREAD_N = 64
|
|
MARLIN_QQQ_MIN_THREAD_K = 128
|
|
MARLIN_QQQ_MAX_PARALLEL = 16
|
|
|
|
MARLIN_QQQ_SUPPORTED_NUM_BITS = [4]
|
|
MARLIN_QQQ_SUPPORTED_GROUP_SIZES = [-1, 128]
|
|
MARLIN_QQQ_SUPPORTED_SYM = [True]
|
|
|
|
|
|
class QQQConfig(QuantizationConfig):
|
|
"""Config class for QQQ
|
|
|
|
Reference: https://arxiv.org/pdf/2406.09904
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
weight_bits: int,
|
|
group_size: int,
|
|
is_sym: bool = True,
|
|
) -> None:
|
|
self.weight_bits = weight_bits
|
|
self.group_size = group_size
|
|
self.is_sym = is_sym
|
|
|
|
# Verify
|
|
if self.weight_bits not in MARLIN_QQQ_SUPPORTED_NUM_BITS:
|
|
raise ValueError(
|
|
f"QQQ does not support weight_bits = {self.weight_bits}. "
|
|
f"Only weight_bits = {MARLIN_QQQ_SUPPORTED_NUM_BITS} "
|
|
"are supported.")
|
|
if self.group_size not in MARLIN_QQQ_SUPPORTED_GROUP_SIZES:
|
|
raise ValueError(
|
|
f"QQQ does not support group_size = {self.group_size}. "
|
|
f"Only group_sizes = {MARLIN_QQQ_SUPPORTED_GROUP_SIZES} "
|
|
"are supported.")
|
|
if self.is_sym not in MARLIN_QQQ_SUPPORTED_SYM:
|
|
raise ValueError(
|
|
f"QQQ does not support is_sym = {self.is_sym}. "
|
|
f"Only sym = {MARLIN_QQQ_SUPPORTED_SYM} are supported.")
|
|
|
|
# 4 Bits packed into 32 bit datatype.
|
|
self.pack_factor = 32 // self.weight_bits
|
|
|
|
# Tile size used by QQQ kernels.
|
|
self.tile_size = MARLIN_QQQ_TILE
|
|
|
|
# Min out_features dim
|
|
self.min_n_threads = MARLIN_QQQ_MIN_THREAD_N
|
|
|
|
# Min in_features dim
|
|
self.min_k_threads = MARLIN_QQQ_MIN_THREAD_K
|
|
|
|
# Max parallel problems to solve at once (improves large
|
|
# batch performance)
|
|
self.max_parallel = MARLIN_QQQ_MAX_PARALLEL
|
|
|
|
# Permutation length used by the QQQ kernels.
|
|
self.perm_len = 1024
|
|
|
|
def __repr__(self) -> str:
|
|
return "QQQConfig(weight_bits={}, group_size={})".format(
|
|
self.weight_bits, self.group_size)
|
|
|
|
@classmethod
|
|
def get_name(cls) -> str:
|
|
return "qqq"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
|
return [torch.half]
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
return 80
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> List[str]:
|
|
"""List of filenames to search for in the model directory."""
|
|
return [
|
|
"quant_config.json",
|
|
"quantize_config.json",
|
|
]
|
|
|
|
@classmethod
|
|
def from_config(cls, config: Dict[str, Any]) -> "QQQConfig":
|
|
weight_bits = cls.get_from_keys(config, ["wbits"])
|
|
group_size = cls.get_from_keys(config, ["group_size"])
|
|
return cls(weight_bits, group_size)
|
|
|
|
def get_quant_method(self, layer: torch.nn.Module,
|
|
prefix: str) -> Optional["QQQLinearMethod"]:
|
|
if isinstance(layer, LinearBase):
|
|
return QQQLinearMethod(self)
|
|
return None
|
|
|
|
def get_scaled_act_names(self) -> List[str]:
|
|
return []
|
|
|
|
|
|
class QQQLinearMethod(LinearMethodBase):
|
|
"""Linear method for QQQ.
|
|
|
|
Args:
|
|
quant_config: The QQQ quantization config.
|
|
"""
|
|
|
|
def __init__(self, quant_config: QQQConfig):
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
input_size_per_partition: int,
|
|
output_partition_sizes: List[int],
|
|
input_size: int,
|
|
output_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
):
|
|
weight_loader = extra_weight_attrs["weight_loader"]
|
|
if params_dtype != torch.float16:
|
|
raise ValueError(
|
|
f"The params dtype must be float16, but got {params_dtype}")
|
|
|
|
# Validate output_size_per_partition
|
|
output_size_per_partition = sum(output_partition_sizes)
|
|
if output_size_per_partition % self.quant_config.min_n_threads != 0:
|
|
raise ValueError(
|
|
f"Weight output_size_per_partition = "
|
|
f"{output_size_per_partition} is not divisible by "
|
|
f"min_n_threads = {self.quant_config.min_n_threads}.")
|
|
if output_size_per_partition % self.quant_config.pack_factor != 0:
|
|
raise ValueError(
|
|
f"Weight output_size_per_partition = "
|
|
f"{output_size_per_partition} is not divisible by "
|
|
f"pack_factor = {self.quant_config.pack_factor}.")
|
|
|
|
# Validate input_size_per_partition
|
|
if input_size_per_partition % self.quant_config.min_k_threads != 0:
|
|
raise ValueError(
|
|
f"Weight input_size_per_partition = "
|
|
f"{input_size_per_partition} is not divisible by "
|
|
f"min_k_threads = {self.quant_config.min_k_threads}.")
|
|
if (self.quant_config.group_size != -1 and
|
|
input_size_per_partition % self.quant_config.group_size != 0):
|
|
raise ValueError(f"Weight input_size_per_partition = "
|
|
f"{input_size_per_partition} is not divisible by "
|
|
f"group_size = {self.quant_config.group_size}.")
|
|
|
|
# Check that we have at least 4 tiles horizontally in the shard
|
|
num_tiles_per_perm = self.quant_config.perm_len // (
|
|
self.quant_config.tile_size**2)
|
|
if output_size_per_partition % num_tiles_per_perm != 0:
|
|
raise ValueError(
|
|
"Each permutation group must reside on the same gpu")
|
|
|
|
# Quantized 4Bit weights packed into Int32.
|
|
qweight = PackedvLLMParameter(
|
|
data=torch.empty(
|
|
input_size_per_partition // self.quant_config.tile_size,
|
|
output_size_per_partition * self.quant_config.tile_size //
|
|
self.quant_config.pack_factor,
|
|
device="cuda",
|
|
dtype=torch.int32,
|
|
),
|
|
input_dim=0,
|
|
output_dim=1,
|
|
packed_dim=1,
|
|
packed_factor=self.quant_config.pack_factor,
|
|
marlin_tile_size=self.quant_config.tile_size,
|
|
weight_loader=weight_loader)
|
|
|
|
s_channel = ChannelQuantScaleParameter(data=torch.empty(
|
|
1,
|
|
output_size_per_partition,
|
|
device="cuda",
|
|
dtype=torch.float,
|
|
),
|
|
weight_loader=weight_loader,
|
|
output_dim=1)
|
|
|
|
if self.quant_config.group_size == -1:
|
|
s_group_data = torch.tensor(
|
|
[],
|
|
device="cuda",
|
|
dtype=torch.half,
|
|
)
|
|
else:
|
|
s_group_data = torch.empty(
|
|
input_size_per_partition // self.quant_config.group_size,
|
|
output_size_per_partition,
|
|
device="cuda",
|
|
dtype=torch.half,
|
|
)
|
|
|
|
s_group_attr = {"data": s_group_data, "weight_loader": weight_loader}
|
|
|
|
if self.quant_config.group_size == -1:
|
|
s_group = BasevLLMParameter(**s_group_attr)
|
|
else:
|
|
s_group = GroupQuantScaleParameter(output_dim=1,
|
|
input_dim=0,
|
|
**s_group_attr)
|
|
|
|
# Allocate workspace (Used for internal locking mechanism)
|
|
max_workspace_size = (
|
|
output_size_per_partition //
|
|
self.quant_config.min_n_threads) * self.quant_config.max_parallel
|
|
|
|
workspace = BasevLLMParameter(data=torch.zeros(max_workspace_size,
|
|
device="cuda",
|
|
dtype=torch.int),
|
|
weight_loader=weight_loader)
|
|
|
|
layer.register_parameter("B", qweight)
|
|
layer.register_parameter("s_channel", s_channel)
|
|
layer.register_parameter("s_group", s_group)
|
|
layer.register_parameter("workspace", workspace)
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
# required by torch.compile
|
|
layer.B = Parameter(layer.B.data, requires_grad=False)
|
|
layer.s_channel = Parameter(layer.s_channel.data, requires_grad=False)
|
|
layer.s_group = Parameter(layer.s_group.data, requires_grad=False)
|
|
layer.workspace = Parameter(layer.workspace.data, requires_grad=False)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
qweight = layer.B
|
|
s_ch = layer.s_channel
|
|
s_group = layer.s_group
|
|
workspace = layer.workspace
|
|
|
|
x_2d = x.view(-1, x.shape[-1])
|
|
|
|
size_m = x_2d.shape[0]
|
|
size_k = x_2d.shape[1]
|
|
size_n = s_ch.shape[1]
|
|
|
|
x_int8, s_tok, _ = ops.scaled_int8_quant(x_2d)
|
|
|
|
output_2d = ops.marlin_qqq_gemm(x_int8, qweight, s_tok, s_ch, s_group,
|
|
workspace, size_m, size_n, size_k)
|
|
|
|
output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], ))
|
|
|
|
if bias is not None:
|
|
output.add_(bias) # In-place add
|
|
|
|
return output
|