vllm/tests/utils.py
2024-06-23 14:42:28 -07:00

196 lines
6.0 KiB
Python

import os
import subprocess
import sys
import time
import warnings
from contextlib import contextmanager
from typing import Dict, List
import openai
import ray
import requests
from vllm.distributed import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.entrypoints.openai.cli_args import make_arg_parser
from vllm.utils import get_open_port, is_hip
if (not is_hip()):
from pynvml import (nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo,
nvmlInit)
# Path to root of repository so that utilities can be imported by ray workers
VLLM_PATH = os.path.abspath(os.path.join(__file__, os.pardir, os.pardir))
class RemoteOpenAIServer:
DUMMY_API_KEY = "token-abc123" # vLLM's OpenAI server does not need API key
MAX_SERVER_START_WAIT_S = 600 # wait for server to start for 60 seconds
@ray.remote(num_gpus=1)
class _RemoteRunner:
def __init__(self, cli_args: List[str], *, wait_url: str,
wait_timeout: float) -> None:
env = os.environ.copy()
env["PYTHONUNBUFFERED"] = "1"
self.proc = subprocess.Popen(
[
sys.executable, "-m", "vllm.entrypoints.openai.api_server",
*cli_args
],
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
)
self._wait_for_server(url=wait_url, timeout=wait_timeout)
def ready(self):
return True
def _wait_for_server(self, *, url: str, timeout: float):
# run health check
start = time.time()
while True:
try:
if requests.get(url).status_code == 200:
break
except Exception as err:
if self.proc.poll() is not None:
raise RuntimeError(
"Server exited unexpectedly.") from err
time.sleep(0.5)
if time.time() - start > timeout:
raise RuntimeError(
"Server failed to start in time.") from err
def __del__(self):
if hasattr(self, "proc"):
self.proc.terminate()
def __init__(self, cli_args: List[str], *, auto_port: bool = True) -> None:
if auto_port:
if "-p" in cli_args or "--port" in cli_args:
raise ValueError("You have manually specified the port"
"when `auto_port=True`.")
cli_args = cli_args + ["--port", str(get_open_port())]
parser = make_arg_parser()
args = parser.parse_args(cli_args)
self.host = str(args.host or 'localhost')
self.port = int(args.port)
self._runner = self._RemoteRunner.remote( # type: ignore
cli_args,
wait_url=self.url_for("health"),
wait_timeout=self.MAX_SERVER_START_WAIT_S)
self._wait_until_ready()
@property
def url_root(self) -> str:
return f"http://{self.host}:{self.port}"
def url_for(self, *parts: str) -> str:
return self.url_root + "/" + "/".join(parts)
def _wait_until_ready(self) -> None:
ray.get(self._runner.ready.remote())
def get_client(self):
return openai.OpenAI(
base_url=self.url_for("v1"),
api_key=self.DUMMY_API_KEY,
)
def get_async_client(self):
return openai.AsyncOpenAI(
base_url=self.url_for("v1"),
api_key=self.DUMMY_API_KEY,
)
def init_test_distributed_environment(
tp_size: int,
pp_size: int,
rank: int,
distributed_init_port: str,
local_rank: int = -1,
) -> None:
distributed_init_method = f"tcp://localhost:{distributed_init_port}"
init_distributed_environment(
world_size=pp_size * tp_size,
rank=rank,
distributed_init_method=distributed_init_method,
local_rank=local_rank)
ensure_model_parallel_initialized(tp_size, pp_size)
def multi_process_parallel(
tp_size: int,
pp_size: int,
test_target,
) -> None:
# Using ray helps debugging the error when it failed
# as compared to multiprocessing.
ray.init(runtime_env={"working_dir": VLLM_PATH})
distributed_init_port = get_open_port()
refs = []
for rank in range(tp_size * pp_size):
refs.append(
test_target.remote(tp_size, pp_size, rank, distributed_init_port))
ray.get(refs)
ray.shutdown()
@contextmanager
def error_on_warning():
"""
Within the scope of this context manager, tests will fail if any warning
is emitted.
"""
with warnings.catch_warnings():
warnings.simplefilter("error")
yield
def wait_for_gpu_memory_to_clear(devices: List[int],
threshold_bytes: int,
timeout_s: float = 120) -> None:
# Use nvml instead of pytorch to reduce measurement error from torch cuda
# context.
nvmlInit()
start_time = time.time()
while True:
output: Dict[int, str] = {}
output_raw: Dict[int, float] = {}
for device in devices:
dev_handle = nvmlDeviceGetHandleByIndex(device)
mem_info = nvmlDeviceGetMemoryInfo(dev_handle)
gb_used = mem_info.used / 2**30
output_raw[device] = gb_used
output[device] = f'{gb_used:.02f}'
print('gpu memory used (GB): ', end='')
for k, v in output.items():
print(f'{k}={v}; ', end='')
print('')
dur_s = time.time() - start_time
if all(v <= (threshold_bytes / 2**30) for v in output_raw.values()):
print(f'Done waiting for free GPU memory on devices {devices=} '
f'({threshold_bytes/2**30=}) {dur_s=:.02f}')
break
if dur_s >= timeout_s:
raise ValueError(f'Memory of devices {devices=} not free after '
f'{dur_s=:.02f} ({threshold_bytes/2**30=})')
time.sleep(5)