129 lines
4.0 KiB
Python
129 lines
4.0 KiB
Python
import openai # use the official client for correctness check
|
|
import pytest
|
|
import requests
|
|
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
|
|
from ...utils import RemoteOpenAIServer
|
|
|
|
# any model with a chat template should work here
|
|
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def server():
|
|
args = [
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
"bfloat16",
|
|
"--max-model-len",
|
|
"8192",
|
|
"--enforce-eager",
|
|
"--max-num-seqs",
|
|
"128",
|
|
]
|
|
|
|
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def client(server):
|
|
return server.get_async_client()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_tokenize_completions(client: openai.AsyncOpenAI,
|
|
model_name: str):
|
|
base_url = str(client.base_url)[:-3].strip("/")
|
|
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
|
|
|
|
for add_special in [False, True]:
|
|
prompt = "This is a test prompt."
|
|
tokens = tokenizer.encode(prompt, add_special_tokens=add_special)
|
|
|
|
response = requests.post(base_url + "/tokenize",
|
|
json={
|
|
"add_special_tokens": add_special,
|
|
"model": model_name,
|
|
"prompt": prompt
|
|
})
|
|
response.raise_for_status()
|
|
|
|
assert response.json() == {
|
|
"tokens": tokens,
|
|
"count": len(tokens),
|
|
"max_model_len": 8192
|
|
}
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_tokenize_chat(client: openai.AsyncOpenAI, model_name: str):
|
|
base_url = str(client.base_url)[:-3].strip("/")
|
|
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
|
|
|
|
for add_generation in [False, True]:
|
|
for add_special in [False, True]:
|
|
conversation = [{
|
|
"role": "user",
|
|
"content": "Hi there!"
|
|
}, {
|
|
"role": "assistant",
|
|
"content": "Nice to meet you!"
|
|
}, {
|
|
"role": "user",
|
|
"content": "Can I ask a question?"
|
|
}]
|
|
|
|
prompt = tokenizer.apply_chat_template(
|
|
add_generation_prompt=add_generation,
|
|
conversation=conversation,
|
|
tokenize=False)
|
|
tokens = tokenizer.encode(prompt, add_special_tokens=add_special)
|
|
|
|
response = requests.post(base_url + "/tokenize",
|
|
json={
|
|
"add_generation_prompt":
|
|
add_generation,
|
|
"add_special_tokens": add_special,
|
|
"messages": conversation,
|
|
"model": model_name
|
|
})
|
|
response.raise_for_status()
|
|
|
|
assert response.json() == {
|
|
"tokens": tokens,
|
|
"count": len(tokens),
|
|
"max_model_len": 8192
|
|
}
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_detokenize(client: openai.AsyncOpenAI, model_name: str):
|
|
base_url = str(client.base_url)[:-3].strip("/")
|
|
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
|
|
|
|
prompt = "This is a test prompt."
|
|
tokens = tokenizer.encode(prompt, add_special_tokens=False)
|
|
|
|
response = requests.post(base_url + "/detokenize",
|
|
json={
|
|
"model": model_name,
|
|
"tokens": tokens
|
|
})
|
|
response.raise_for_status()
|
|
|
|
assert response.json() == {"prompt": prompt}
|