vllm/tests/entrypoints/test_llm_generate.py
Cyrus Leung 5ae5ed1e60
[Core] Consolidate prompt arguments to LLM engines (#4328)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-05-28 13:29:31 -07:00

145 lines
4.5 KiB
Python

import weakref
from typing import List
import pytest
from vllm import LLM, RequestOutput, SamplingParams
from ..conftest import cleanup
MODEL_NAME = "facebook/opt-125m"
PROMPTS = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
TOKEN_IDS = [
[0],
[0, 1],
[0, 2, 1],
[0, 3, 1, 2],
]
pytestmark = pytest.mark.llm
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(model=MODEL_NAME,
max_num_batched_tokens=4096,
tensor_parallel_size=1,
gpu_memory_utilization=0.10,
enforce_eager=True)
with llm.deprecate_legacy_api():
yield weakref.proxy(llm)
del llm
cleanup()
def assert_outputs_equal(o1: List[RequestOutput], o2: List[RequestOutput]):
assert [o.outputs for o in o1] == [o.outputs for o in o2]
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize('prompt', PROMPTS)
def test_v1_v2_api_consistency_single_prompt_string(llm: LLM, prompt):
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
with pytest.warns(DeprecationWarning, match="'prompts'"):
v1_output = llm.generate(prompts=prompt,
sampling_params=sampling_params)
v2_output = llm.generate(prompt, sampling_params=sampling_params)
assert_outputs_equal(v1_output, v2_output)
v2_output = llm.generate({"prompt": prompt},
sampling_params=sampling_params)
assert_outputs_equal(v1_output, v2_output)
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize('prompt_token_ids', TOKEN_IDS)
def test_v1_v2_api_consistency_single_prompt_tokens(llm: LLM,
prompt_token_ids):
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"):
v1_output = llm.generate(prompt_token_ids=prompt_token_ids,
sampling_params=sampling_params)
v2_output = llm.generate({"prompt_token_ids": prompt_token_ids},
sampling_params=sampling_params)
assert_outputs_equal(v1_output, v2_output)
@pytest.mark.skip_global_cleanup
def test_v1_v2_api_consistency_multi_prompt_string(llm: LLM):
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
with pytest.warns(DeprecationWarning, match="'prompts'"):
v1_output = llm.generate(prompts=PROMPTS,
sampling_params=sampling_params)
v2_output = llm.generate(PROMPTS, sampling_params=sampling_params)
assert_outputs_equal(v1_output, v2_output)
v2_output = llm.generate(
[{
"prompt": p
} for p in PROMPTS],
sampling_params=sampling_params,
)
assert_outputs_equal(v1_output, v2_output)
@pytest.mark.skip_global_cleanup
def test_v1_v2_api_consistency_multi_prompt_tokens(llm: LLM):
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"):
v1_output = llm.generate(prompt_token_ids=TOKEN_IDS,
sampling_params=sampling_params)
v2_output = llm.generate(
[{
"prompt_token_ids": p
} for p in TOKEN_IDS],
sampling_params=sampling_params,
)
assert_outputs_equal(v1_output, v2_output)
@pytest.mark.skip_global_cleanup
def test_multiple_sampling_params(llm: LLM):
sampling_params = [
SamplingParams(temperature=0.01, top_p=0.95),
SamplingParams(temperature=0.3, top_p=0.95),
SamplingParams(temperature=0.7, top_p=0.95),
SamplingParams(temperature=0.99, top_p=0.95),
]
# Multiple SamplingParams should be matched with each prompt
outputs = llm.generate(PROMPTS, sampling_params=sampling_params)
assert len(PROMPTS) == len(outputs)
# Exception raised, if the size of params does not match the size of prompts
with pytest.raises(ValueError):
outputs = llm.generate(PROMPTS, sampling_params=sampling_params[:3])
# Single SamplingParams should be applied to every prompt
single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95)
outputs = llm.generate(PROMPTS, sampling_params=single_sampling_params)
assert len(PROMPTS) == len(outputs)
# sampling_params is None, default params should be applied
outputs = llm.generate(PROMPTS, sampling_params=None)
assert len(PROMPTS) == len(outputs)