vllm/csrc/sparse/cutlass/sparse_compressor_c3x.cu
Tyler Michael Smith 5a9da2e6e9
[Bugfix][Build/CI] Fix sparse CUTLASS compilation on CUDA [12.0, 12.2) (#11311)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-19 02:43:30 +00:00

166 lines
6.5 KiB
Plaintext

// clang-format will break include orders
// clang-format off
#include <cudaTypedefs.h>
#if defined CUDA_VERSION && CUDA_VERSION >= 12020
#include "sparse_scaled_mm_c3x.cuh"
#include "cutlass/numeric_conversion.h"
#include "cutlass/transform/device/transform_universal_adapter.hpp"
#include "cutlass/transform/kernel/sparse_gemm_compressor.hpp"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
// clang-format on
using namespace cute;
using namespace vllm;
/// Make A structured sparse by replacing elements with 0 and compress it
template <typename ElementA_, typename ElementAcc_>
bool cutlass_sparse_compress(torch::Tensor& a_nzs, torch::Tensor& a_meta,
torch::Tensor const& a) {
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 || a.dtype() == torch::kFloat8_e4m3fn ||
a.dtype() == torch::kFloat16 || a.dtype() == torch::kBFloat16);
TORCH_CHECK(a.dim() == 2)
// Check for strides and alignment
TORCH_CHECK(a.stride(0) % 4 == 0) // Required for semi-structured sparsity
TORCH_CHECK(a.stride(1) == 1)
int m = a.size(0);
int k = a.size(1);
// Sparse kernel setup; this kernel is not used for matmul,
// but just for setting up the compressor utility
// A matrix configuration
using ElementA = ElementA_;
using LayoutTagA = cutlass::layout::RowMajor;
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
// B matrix configuration
using ElementB = ElementA;
using LayoutTagB = cutlass::layout::ColumnMajor;
constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
// C/D matrix configuration
using ElementC = float;
using LayoutTagC = cutlass::layout::ColumnMajor;
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
// Core kernel configurations
using ElementAccumulator = ElementAcc_;
using TileShape = Shape<_128, _128, _128>;
using TileShapeRef = Shape<_128, _128, _64>;
using ClusterShape = Shape<_1, _2, _1>;
using KernelSchedule = typename std::conditional<
std::is_same_v<ElementA, cutlass::float_e4m3_t>,
cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum,
cutlass::gemm::KernelTmaWarpSpecialized>::type;
using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized;
using ProblemShape = Shape<int, int, int, int>;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementAccumulator, ElementC, LayoutTagC,
AlignmentC, ElementC, LayoutTagC, AlignmentC,
EpilogueSchedule>::CollectiveOp;
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassSparseTensorOp, ElementA,
LayoutTagA, AlignmentA, ElementB, LayoutTagB, AlignmentB,
ElementAccumulator, TileShape, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
sizeof(typename CollectiveEpilogue::SharedStorage))>,
KernelSchedule>::CollectiveOp;
using GemmKernel =
cutlass::gemm::kernel::GemmUniversal<ProblemShape, CollectiveMainloop,
CollectiveEpilogue>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
using StrideA = cutlass::gemm::TagToStrideA_t<LayoutTagA>;
using StrideE = StrideA;
using StrideA = Stride<int64_t, Int<1>, int64_t>;
// The n (=1) dimension does not matter for the compressor
typename GemmKernel::ProblemShape prob_shape{m, 1, k, 1};
using LayoutA = typename GemmKernel::CollectiveMainloop::LayoutA;
using LayoutE = typename GemmKernel::CollectiveMainloop::LayoutE;
using ElementE = typename GemmKernel::CollectiveMainloop::ElementE;
using SparseConfig = typename GemmKernel::CollectiveMainloop::SparseConfig;
// Offline compressor kernel
using CompressorUtility =
cutlass::transform::kernel::StructuredSparseCompressorUtility<
ProblemShape, ElementA, LayoutTagA, SparseConfig>;
using CompressorKernel =
cutlass::transform::kernel::StructuredSparseCompressor<
ProblemShape, ElementA, LayoutTagA, SparseConfig,
cutlass::arch::Sm90>;
using Compressor =
cutlass::transform::device::TransformUniversalAdapter<CompressorKernel>;
auto [M, N, K, L] = prob_shape;
StrideA stride_A;
stride_A =
cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L));
CompressorUtility compressor_utility(prob_shape, stride_A);
int ME = compressor_utility.get_metadata_m_physical();
int KE = compressor_utility.get_metadata_k_physical();
int KC = compressor_utility.get_tensorA_k_physical();
auto a_ptr = static_cast<ElementA*>(a.data_ptr());
auto a_nzs_ptr = static_cast<ElementA*>(a_nzs.data_ptr());
auto a_meta_ptr = static_cast<typename Gemm::CollectiveMainloop::ElementE*>(
a_meta.data_ptr());
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = 0;
hw_info.sm_count =
cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
hw_info.device_id);
typename Compressor::Arguments arguments{
prob_shape, {a_ptr, stride_A, a_nzs_ptr, a_meta_ptr}, {hw_info}};
Compressor compressor_op;
size_t workspace_size = Compressor::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
CUTLASS_CHECK(compressor_op.can_implement(arguments));
CUTLASS_CHECK(compressor_op.initialize(arguments, workspace.get()));
CUTLASS_CHECK(compressor_op.run());
CUDA_CHECK(cudaDeviceSynchronize());
return true;
}
bool cutlass_sparse_compress_sm90(torch::Tensor& a_nzs, torch::Tensor& a_meta,
torch::Tensor const& a) {
if (a.dtype() == torch::kBFloat16) {
return cutlass_sparse_compress<cutlass::bfloat16_t, float>(a_nzs, a_meta,
a);
} else if (a.dtype() == torch::kFloat16) {
return cutlass_sparse_compress<cutlass::half_t, float>(a_nzs, a_meta, a);
} else if (a.dtype() == torch::kFloat8_e4m3fn) {
return cutlass_sparse_compress<cutlass::float_e4m3_t, float>(a_nzs, a_meta,
a);
} else if (a.dtype() == torch::kInt8) {
return cutlass_sparse_compress<int8_t, int32_t>(a_nzs, a_meta, a);
}
return false;
}
#endif