vllm/vllm/worker/cache_engine.py
Lucas Wilkinson 5952d8ab61
[Attention] Get rid of mla cache alignment (#14842)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-03-15 05:08:25 +00:00

132 lines
5.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""CacheEngine class for managing the KV cache."""
from typing import List
import torch
from vllm.attention import get_attn_backend
from vllm.config import CacheConfig, DeviceConfig, ModelConfig, ParallelConfig
from vllm.logger import init_logger
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, LayerBlockType,
get_dtype_size, is_pin_memory_available)
logger = init_logger(__name__)
class CacheEngine:
"""Manages the KV cache.
This class is responsible for initializing and managing the GPU and CPU KV
caches. It also provides methods for performing KV cache operations, such
as swapping and copying.
"""
def __init__(
self,
cache_config: CacheConfig,
model_config: ModelConfig,
parallel_config: ParallelConfig,
device_config: DeviceConfig,
) -> None:
self.cache_config = cache_config
self.model_config = model_config
self.parallel_config = parallel_config
self.device_config = device_config
self.head_size = model_config.get_head_size()
# Models like Jamba, have mixed typed layers, E.g Mamba
self.num_attention_layers = model_config.get_num_layers_by_block_type(
parallel_config, LayerBlockType.attention)
self.num_kv_heads = model_config.get_num_kv_heads(parallel_config)
self.block_size = cache_config.block_size
self.num_gpu_blocks = cache_config.num_gpu_blocks
if self.num_gpu_blocks:
self.num_gpu_blocks //= parallel_config.pipeline_parallel_size
self.num_cpu_blocks = cache_config.num_cpu_blocks
if self.num_cpu_blocks:
self.num_cpu_blocks //= parallel_config.pipeline_parallel_size
if cache_config.cache_dtype == "auto":
self.dtype = model_config.dtype
else:
self.dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_config.cache_dtype]
# Get attention backend.
self.attn_backend = get_attn_backend(self.head_size,
model_config.dtype,
cache_config.cache_dtype,
self.block_size,
model_config.is_attention_free,
use_mla=model_config.use_mla)
# Initialize the cache.
self.gpu_cache = self._allocate_kv_cache(
self.num_gpu_blocks, self.device_config.device_type)
self.cpu_cache = self._allocate_kv_cache(self.num_cpu_blocks, "cpu")
def _allocate_kv_cache(
self,
num_blocks: int,
device: str,
) -> List[torch.Tensor]:
"""Allocates KV cache on the specified device."""
kv_cache_shape = self.attn_backend.get_kv_cache_shape(
num_blocks, self.block_size, self.num_kv_heads, self.head_size)
pin_memory = is_pin_memory_available() if device == "cpu" else False
kv_cache: List[torch.Tensor] = []
for _ in range(self.num_attention_layers):
# null block in CpuGpuBlockAllocator requires at least that
# block to be zeroed-out.
# We zero-out everything for simplicity.
layer_kv_cache = torch.zeros(kv_cache_shape,
dtype=self.dtype,
pin_memory=pin_memory,
device=device)
# view back to (TOTAL_PAGES, PAGE_SIZE, entry_shape...) for cases
# when entry_shape is higher than 1D
kv_cache.append(layer_kv_cache)
return kv_cache
def swap_in(self, src_to_dst: torch.Tensor) -> None:
for i in range(self.num_attention_layers):
self.attn_backend.swap_blocks(self.cpu_cache[i], self.gpu_cache[i],
src_to_dst)
def swap_out(self, src_to_dst: torch.Tensor) -> None:
for i in range(self.num_attention_layers):
self.attn_backend.swap_blocks(self.gpu_cache[i], self.cpu_cache[i],
src_to_dst)
def copy(self, src_to_dsts: torch.Tensor) -> None:
self.attn_backend.copy_blocks(self.gpu_cache, src_to_dsts)
@staticmethod
def get_cache_block_size(
cache_config: CacheConfig,
model_config: ModelConfig,
parallel_config: ParallelConfig,
) -> int:
head_size = model_config.get_head_size()
num_heads = model_config.get_num_kv_heads(parallel_config)
num_attention_layers = model_config.get_num_layers_by_block_type(
parallel_config, LayerBlockType.attention)
if cache_config.cache_dtype == "auto":
dtype = model_config.dtype
else:
dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_config.cache_dtype]
key_cache_entry = num_heads * head_size
# For MLA there is no value cache, since the latent vector
# is joint keys and values.
value_cache_entry = key_cache_entry if not model_config.use_mla else 0
total = num_attention_layers * cache_config.block_size * \
(key_cache_entry + value_cache_entry)
dtype_size = get_dtype_size(dtype)
return dtype_size * total