vllm/vllm/entrypoints/openai/serving_score.py
Wallas Henrique 58fd57ff1d
[Bugfix] Fix score api for missing max_model_len validation (#12119)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
2025-01-17 16:24:22 +00:00

237 lines
8.6 KiB
Python

import asyncio
import time
from typing import Any, AsyncGenerator, Dict, List, Optional, Union, cast
from fastapi import Request
from vllm.config import ModelConfig
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.logger import RequestLogger
from vllm.entrypoints.openai.protocol import (ErrorResponse, ScoreRequest,
ScoreResponse, ScoreResponseData,
UsageInfo)
from vllm.entrypoints.openai.serving_engine import OpenAIServing
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
from vllm.inputs.data import TokensPrompt
from vllm.logger import init_logger
from vllm.outputs import PoolingRequestOutput, ScoringRequestOutput
from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer
from vllm.utils import make_async, merge_async_iterators
logger = init_logger(__name__)
def make_pairs(text_1: Union[List[str], str], text_2: Union[List[str],
str]) -> List:
if isinstance(text_1, (str, dict)):
# Convert a single prompt to a list.
text_1 = [text_1]
text_1 = [t for t in text_1]
if isinstance(text_2, (str, dict)):
# Convert a single prompt to a list.
text_2 = [text_2]
text_2 = [t for t in text_2]
if len(text_1) > 1 and len(text_1) != len(text_2):
raise ValueError("Input lengths must be either 1:1, 1:N or N:N")
if len(text_1) == 0:
raise ValueError("At least one text element must be given")
if len(text_2) == 0:
raise ValueError("At least one text_pair element must be given")
if len(text_1) == 1:
text_1 = text_1 * len(text_2)
return [(t1, t2) for t1, t2 in zip(text_1, text_2)]
class OpenAIServingScores(OpenAIServing):
def __init__(
self,
engine_client: EngineClient,
model_config: ModelConfig,
models: OpenAIServingModels,
*,
request_logger: Optional[RequestLogger],
) -> None:
super().__init__(engine_client=engine_client,
model_config=model_config,
models=models,
request_logger=request_logger)
async def create_score(
self,
request: ScoreRequest,
raw_request: Optional[Request] = None,
) -> Union[ScoreResponse, ErrorResponse]:
"""
Score API similar to Sentence Transformers cross encoder
See https://sbert.net/docs/package_reference/cross_encoder
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
return error_check_ret
model_name = request.model
request_id = f"score-{self._base_request_id(raw_request)}"
created_time = int(time.time())
truncate_prompt_tokens = request.truncate_prompt_tokens
request_prompts = []
engine_prompts = []
try:
(
lora_request,
prompt_adapter_request,
) = self._maybe_get_adapters(request)
tokenizer = await self.engine_client.get_tokenizer(lora_request)
if prompt_adapter_request is not None:
raise NotImplementedError("Prompt adapter is not supported "
"for scoring models")
if isinstance(tokenizer, MistralTokenizer):
raise ValueError(
"MistralTokenizer not supported for cross-encoding")
if not self.model_config.is_cross_encoder:
raise ValueError("Model is not cross encoder.")
if truncate_prompt_tokens is not None and \
truncate_prompt_tokens > self.max_model_len:
raise ValueError(
f"truncate_prompt_tokens value ({truncate_prompt_tokens}) "
f"is greater than max_model_len ({self.max_model_len})."
f" Please, select a smaller truncation size.")
input_pairs = make_pairs(request.text_1, request.text_2)
for q, t in input_pairs:
request_prompt = f"{q}{tokenizer.sep_token}{t}"
tokenization_kwargs: Dict[str, Any] = {}
if truncate_prompt_tokens is not None:
tokenization_kwargs["truncation"] = True
tokenization_kwargs["max_length"] = truncate_prompt_tokens
tokenize_async = make_async(tokenizer.__call__,
executor=self._tokenizer_executor)
prompt_inputs = await tokenize_async(text=q,
text_pair=t,
**tokenization_kwargs)
input_ids = prompt_inputs["input_ids"]
text_token_prompt = \
self._validate_input(request, input_ids, request_prompt)
engine_prompt = TokensPrompt(
prompt_token_ids=text_token_prompt["prompt_token_ids"],
token_type_ids=prompt_inputs.get("token_type_ids"))
request_prompts.append(request_prompt)
engine_prompts.append(engine_prompt)
except ValueError as e:
logger.exception("Error in preprocessing prompt inputs")
return self.create_error_response(str(e))
# Schedule the request and get the result generator.
generators: List[AsyncGenerator[PoolingRequestOutput, None]] = []
try:
pooling_params = request.to_pooling_params()
for i, engine_prompt in enumerate(engine_prompts):
request_id_item = f"{request_id}-{i}"
self._log_inputs(request_id_item,
request_prompts[i],
params=pooling_params,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request)
trace_headers = (None if raw_request is None else await
self._get_trace_headers(raw_request.headers))
generator = self.engine_client.encode(
engine_prompt,
pooling_params,
request_id_item,
lora_request=lora_request,
trace_headers=trace_headers,
priority=request.priority,
)
generators.append(generator)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
result_generator = merge_async_iterators(*generators)
num_prompts = len(engine_prompts)
# Non-streaming response
final_res_batch: List[Optional[PoolingRequestOutput]]
final_res_batch = [None] * num_prompts
try:
async for i, res in result_generator:
final_res_batch[i] = res
assert all(final_res is not None for final_res in final_res_batch)
final_res_batch_checked = cast(List[PoolingRequestOutput],
final_res_batch)
response = self.request_output_to_score_response(
final_res_batch_checked,
request_id,
created_time,
model_name,
)
except asyncio.CancelledError:
return self.create_error_response("Client disconnected")
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
return response
def request_output_to_score_response(
self,
final_res_batch: List[PoolingRequestOutput],
request_id: str,
created_time: int,
model_name: str,
) -> ScoreResponse:
items: List[ScoreResponseData] = []
num_prompt_tokens = 0
for idx, final_res in enumerate(final_res_batch):
classify_res = ScoringRequestOutput.from_base(final_res)
item = ScoreResponseData(
index=idx,
score=classify_res.outputs.score,
)
prompt_token_ids = final_res.prompt_token_ids
items.append(item)
num_prompt_tokens += len(prompt_token_ids)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
total_tokens=num_prompt_tokens,
)
return ScoreResponse(
id=request_id,
created=created_time,
model=model_name,
data=items,
usage=usage,
)