vllm/vllm/worker/neuron_model_runner.py
SangBin Cho 533d2a1f39
[Typing] Mypy typing part 2 (#4043)
Co-authored-by: SangBin Cho <sangcho@sangcho-LT93GQWG9C.local>
2024-04-17 17:28:43 -07:00

292 lines
12 KiB
Python

from typing import Dict, List, Optional, Tuple
import torch
from torch import nn
from vllm.config import (DeviceConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.logger import init_logger
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.model_loader.neuron import get_neuron_model
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import SamplerOutput, SequenceData, SequenceGroupMetadata
from vllm.utils import (async_tensor_h2d, is_pin_memory_available,
make_tensor_with_pad, maybe_expand_dim)
logger = init_logger(__name__)
class NeuronModelRunner:
def __init__(
self,
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
):
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
if model_config is not None and model_config.get_sliding_window():
logger.warning("Sliding window is not supported on Neuron. "
"The model will run without sliding window.")
self.device_config = (device_config
if device_config is not None else DeviceConfig())
self.device = self.device_config.device
self.pin_memory = is_pin_memory_available()
# Lazy initialization.
self.model: nn.Module # initialize after load_model.
def load_model(self) -> None:
self.model = get_neuron_model(self.model_config,
parallel_config=self.parallel_config,
scheduler_config=self.scheduler_config)
def _prepare_prompt(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, List[int]]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[List[int]] = []
input_positions: List[List[int]] = []
input_block_ids: List[int] = []
prompt_lens: List[int] = []
for seq_group_metadata in seq_group_metadata_list:
assert seq_group_metadata.is_prompt
seq_ids = list(seq_group_metadata.seq_data.keys())
assert len(seq_ids) == 1
seq_id = seq_ids[0]
seq_data = seq_group_metadata.seq_data[seq_id]
prompt_tokens = seq_data.get_token_ids()
prompt_len = len(prompt_tokens)
prompt_lens.append(prompt_len)
input_tokens.append(prompt_tokens)
input_positions.append(list(range(prompt_len)))
assert seq_group_metadata.block_tables is not None
block_table = seq_group_metadata.block_tables[seq_id]
assert len(block_table) == 1
input_block_ids.append(block_table[0])
max_prompt_len = max(prompt_lens)
assert max_prompt_len > 0
input_tokens = make_tensor_with_pad(input_tokens,
max_prompt_len,
pad=0,
dtype=torch.long,
device=self.device)
input_positions = make_tensor_with_pad(input_positions,
max_prompt_len,
pad=0,
dtype=torch.long,
device=self.device)
input_block_ids = torch.tensor(input_block_ids,
dtype=torch.long,
device=self.device)
return input_tokens, input_positions, input_block_ids, prompt_lens
def _prepare_decode(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[List[int]] = []
input_positions: List[List[int]] = []
input_block_ids: List[int] = []
context_lens: List[int] = []
for seq_group_metadata in seq_group_metadata_list:
assert not seq_group_metadata.is_prompt
seq_ids = list(seq_group_metadata.seq_data.keys())
for seq_id in seq_ids:
seq_data = seq_group_metadata.seq_data[seq_id]
generation_token = seq_data.get_last_token_id()
input_tokens.append([generation_token])
seq_len = seq_data.get_len()
position = seq_len - 1
input_positions.append([position])
context_lens.append(seq_len)
assert seq_group_metadata.block_tables is not None
block_table = seq_group_metadata.block_tables[seq_id]
assert len(block_table) == 1
input_block_ids.append(block_table[0])
input_tokens = make_tensor_with_pad(input_tokens,
max_len=1,
pad=0,
dtype=torch.long,
device=self.device)
input_positions = make_tensor_with_pad(input_positions,
max_len=1,
pad=0,
dtype=torch.long,
device=self.device)
context_lens = torch.tensor(context_lens,
dtype=torch.int,
device=self.device)
input_block_ids = torch.tensor(input_block_ids,
dtype=torch.long,
device=self.device)
return input_tokens, input_positions, input_block_ids
def _prepare_sample(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
prompt_lens: List[int],
) -> SamplingMetadata:
seq_groups: List[Tuple[List[int], SamplingParams]] = []
selected_token_indices: List[int] = []
generators: List[torch.Generator] = []
selected_token_start_idx = 0
categorized_sample_indices: Dict[SamplingType,
List[Tuple[int, int]]] = {
t: []
for t in SamplingType
}
categorized_sample_indices_start_idx = 0
categorized_sampled_token_indices_start_idx = 0
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
seq_ids = list(seq_group_metadata.seq_data.keys())
sampling_params = seq_group_metadata.sampling_params
seq_groups.append((seq_ids, sampling_params))
if seq_group_metadata.is_prompt:
assert len(seq_ids) == 1
assert prompt_lens is not None
prompt_len = prompt_lens[i]
if sampling_params.prompt_logprobs is not None:
# NOTE: prompt token positions do not need sample, skip
categorized_sample_indices_start_idx += prompt_len - 1
categorized_sample_indices[
sampling_params.sampling_type].append(
(categorized_sample_indices_start_idx,
categorized_sampled_token_indices_start_idx))
categorized_sample_indices_start_idx += 1
categorized_sampled_token_indices_start_idx += 1
if sampling_params.prompt_logprobs is not None:
selected_token_indices.extend(
range(selected_token_start_idx,
selected_token_start_idx + prompt_len - 1))
selected_token_indices.append(selected_token_start_idx +
prompt_len - 1)
selected_token_start_idx += prompt_len
if sampling_params.seed is not None:
seq_group_metadata.state.generator = torch.Generator(
device=self.device).manual_seed(sampling_params.seed)
else:
num_seqs = len(seq_ids)
selected_token_indices.extend(
range(selected_token_start_idx,
selected_token_start_idx + num_seqs))
selected_token_start_idx += num_seqs
categorized_sample_indices[
sampling_params.sampling_type].extend(
zip(
range(
categorized_sample_indices_start_idx,
categorized_sample_indices_start_idx +
num_seqs),
range(
categorized_sampled_token_indices_start_idx,
categorized_sampled_token_indices_start_idx +
num_seqs)))
categorized_sample_indices_start_idx += num_seqs
categorized_sampled_token_indices_start_idx += num_seqs
if sampling_params.seed is not None:
generators.append(seq_group_metadata.state.generator)
selected_token_indices = async_tensor_h2d(selected_token_indices,
dtype=torch.long,
target_device=self.device,
pin_memory=self.pin_memory)
categorized_sample_indices = {
t: maybe_expand_dim(
async_tensor_h2d(seq_ids,
dtype=torch.int,
target_device=self.device,
pin_memory=self.pin_memory), 2, 2)
for t, seq_ids in categorized_sample_indices.items()
}
seq_data: Dict[int, SequenceData] = {}
for seq_group_metadata in seq_group_metadata_list:
seq_data.update(seq_group_metadata.seq_data)
sampling_metadata = SamplingMetadata(
seq_groups=seq_groups,
seq_data=seq_data,
prompt_lens=prompt_lens,
selected_token_indices=selected_token_indices,
categorized_sample_indices=categorized_sample_indices,
generators=generators,
)
return sampling_metadata
def prepare_input_tensors(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, SamplingMetadata]:
# NOTE: We assume that all sequences in the group are all prompts or
# all decodes.
is_prompt = seq_group_metadata_list[0].is_prompt
# Prepare input tensors.
if is_prompt:
(input_tokens, input_positions, input_block_ids,
prompt_lens) = self._prepare_prompt(seq_group_metadata_list)
else:
(input_tokens, input_positions,
input_block_ids) = self._prepare_decode(seq_group_metadata_list)
prompt_lens = []
sampling_metadata = self._prepare_sample(seq_group_metadata_list,
prompt_lens)
return (input_tokens, input_positions, input_block_ids,
sampling_metadata)
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Optional[SamplerOutput]:
(input_tokens, input_positions, input_block_ids, sampling_metadata
) = self.prepare_input_tensors(seq_group_metadata_list)
hidden_states = self.model(
input_ids=input_tokens,
positions=input_positions,
input_block_ids=input_block_ids,
)
# Compute the logits.
logits = self.model.compute_logits(hidden_states, sampling_metadata)
# Sample the next token.
output = self.model.sample(
logits=logits,
sampling_metadata=sampling_metadata,
)
return output
@property
def vocab_size(self) -> int:
return self.model_config.get_vocab_size()