vllm/tests/quantization/test_fp8.py

145 lines
5.8 KiB
Python

"""Tests whether FP8 computation is enabled correctly.
Run `pytest tests/quantization/test_fp8.py --forked`.
"""
import pytest
import torch
from tests.quantization.utils import is_quant_method_supported
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.fp8 import (Fp8KVCacheMethod,
Fp8LinearMethod)
from vllm.platforms import current_platform
MODELS = [
"neuralmagic/Meta-Llama-3-8B-Instruct-FP8-KV",
"nm-testing/Phi-3-mini-128k-instruct-FP8",
"nm-testing/Qwen2-0.5B-Instruct-FP8-SkipQKV",
]
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
reason="FP8 is not supported on this GPU type.")
@pytest.mark.parametrize("model_id", MODELS)
@pytest.mark.parametrize("force_marlin", [False, True])
def test_model_load_and_run(vllm_runner, model_id: str, force_marlin: bool,
monkeypatch) -> None:
if force_marlin:
monkeypatch.setenv("VLLM_TEST_FORCE_FP8_MARLIN", "1")
with vllm_runner(model_id) as llm:
# note: this does not test accuracy, just that we can run through
# see lm-eval tests for accuracy
outputs = llm.generate_greedy(prompts=["Hello my name is"],
max_tokens=10)
print(outputs[0][1])
KV_CACHE_MODELS = [
# Deprecated AutoFP8 format using .kv_scale
"neuralmagic/Meta-Llama-3-8B-Instruct-FP8-KV",
# AutoFP8 format using separate .k_scale and .v_scale
"nm-testing/Qwen2-1.5B-Instruct-FP8-K-V",
]
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
reason="FP8 is not supported on this GPU type.")
@pytest.mark.parametrize("model_id", KV_CACHE_MODELS)
def test_kv_cache_model_load_and_run(vllm_runner, model_id: str):
with vllm_runner(model_id, kv_cache_dtype="fp8") as llm:
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
attn = model.model.layers[0].self_attn.attn
assert isinstance(attn.quant_method, Fp8KVCacheMethod)
# NOTE: it is valid for scales to be 1.0 (default value), but we know
# these checkpoints have scales < 1.0
assert 0.0 < attn._k_scale < 1.0
assert 0.0 < attn._v_scale < 1.0
# note: this does not test accuracy, just that we can run through
# see lm-eval tests for accuracy
outputs = llm.generate_greedy(prompts=["Hello my name is"],
max_tokens=10)
print(outputs[0][1])
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
reason="FP8 is not supported on this GPU type.")
@pytest.mark.parametrize("kv_cache_dtype", ["auto", "fp8"])
@pytest.mark.parametrize("force_marlin", [False, True])
def test_load_fp16_model(vllm_runner, kv_cache_dtype: str, force_marlin: bool,
monkeypatch) -> None:
if force_marlin:
monkeypatch.setenv("VLLM_TEST_FORCE_FP8_MARLIN", "1")
with vllm_runner("facebook/opt-125m",
quantization="fp8",
kv_cache_dtype=kv_cache_dtype) as llm:
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
fc1 = model.model.decoder.layers[0].fc1
assert isinstance(fc1.quant_method, Fp8LinearMethod)
if kv_cache_dtype == "fp8":
attn = model.model.decoder.layers[0].self_attn.attn
assert isinstance(attn.quant_method, Fp8KVCacheMethod)
assert attn._k_scale == 1.0
assert attn._v_scale == 1.0
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
if capability >= 89 and not force_marlin:
# For GPUs with hardware support, we keep weights in fp8
assert fc1.weight.dtype == torch.float8_e4m3fn
else:
# For GPUs without hardware support, we pack the fp8 weights
# for weight-only quantization using Marlin kernels
assert fc1.weight.dtype == torch.int32
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
reason="FP8 is not supported on this GPU type.")
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
def test_scaled_fp8_quant(dtype) -> None:
def quantize_ref(tensor, inv_scale):
# The reference implementation that fully aligns to
# the kernel being tested.
finfo = torch.finfo(torch.float8_e4m3fn)
scale = inv_scale.reciprocal()
qweight = (tensor.to(torch.float32) * scale).clamp(min=finfo.min,
max=finfo.max)
qweight = qweight.to(torch.float8_e4m3fn)
return qweight
def per_tensor_dequantize(tensor, inv_scale, dtype):
fake_qweight = tensor.to(dtype)
dq_weight = fake_qweight * inv_scale
return dq_weight
# Note that we use a shape % 4 != 0 to cover edge cases,
# because scaled_fp8_quant is vectorized by 4.
x = (torch.randn(size=(11, 11), device="cuda") * 13).to(dtype)
# Dynamic quantization
ref_y, inv_scale = ops.scaled_fp8_quant(x, None)
ref_y = per_tensor_dequantize(ref_y, inv_scale, dtype)
# Reference dynamic quantizaton
y = quantize_ref(x, inv_scale)
torch.testing.assert_close(ref_y,
per_tensor_dequantize(y, inv_scale, dtype))
# Static quantization
y, _ = ops.scaled_fp8_quant(x, inv_scale)
torch.testing.assert_close(ref_y,
per_tensor_dequantize(y, inv_scale, dtype))
# Padding
y, _ = ops.scaled_fp8_quant(x, inv_scale, num_token_padding=17)
assert y.shape[0] == 17
torch.testing.assert_close(
ref_y,
per_tensor_dequantize(torch.narrow(y, 0, 0, x.shape[0]), inv_scale,
dtype))