88 lines
3.4 KiB
Python
88 lines
3.4 KiB
Python
import pytest
|
|
import torch
|
|
|
|
import vllm._custom_ops as ops
|
|
from tests.kernels.quant_utils import (ref_dynamic_per_tensor_fp8_quant,
|
|
ref_dynamic_per_token_quant)
|
|
|
|
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
|
HIDDEN_SIZES = [1, 2, 3, 4, 16, 67, 768, 2048, 5120, 5137, 8192,
|
|
8193] # Arbitrary values for testing
|
|
HIDDEN_SIZES += list(range(1024, 1033)) # vectorized conversion edge cases
|
|
NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing
|
|
SCALE_UBS = [True, False]
|
|
SEEDS = [0]
|
|
|
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("scale_ub", SCALE_UBS)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@torch.inference_mode()
|
|
def test_dynamic_per_token_fp8_quant(num_tokens: int, hidden_size: int,
|
|
dtype: torch.dtype, scale_ub: bool,
|
|
seed: int) -> None:
|
|
torch.random.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
x = torch.rand(num_tokens, hidden_size, dtype=dtype,
|
|
device="cuda") + 1e-6 # avoid nans
|
|
|
|
scale_ub = torch.mean(x).to(dtype=torch.float32, device='cuda') \
|
|
if scale_ub else None
|
|
ref_out, ref_scales = ref_dynamic_per_token_quant(x, torch.float8_e4m3fn,
|
|
scale_ub)
|
|
ops_out, ops_scales = ops.scaled_fp8_quant(x,
|
|
scale_ub=scale_ub,
|
|
use_per_token_if_dynamic=True)
|
|
|
|
torch.testing.assert_close(ref_scales, ops_scales)
|
|
torch.testing.assert_close(ref_out.to(dtype=torch.float32),
|
|
ops_out.to(dtype=torch.float32))
|
|
|
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@torch.inference_mode()
|
|
def test_dynamic_per_tensor_fp8_quant(num_tokens: int, hidden_size: int,
|
|
dtype: torch.dtype, seed: int) -> None:
|
|
torch.random.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
|
|
|
|
ref_out, ref_scale = ref_dynamic_per_tensor_fp8_quant(x)
|
|
ops_out, ops_scale = ops.scaled_fp8_quant(x)
|
|
|
|
torch.testing.assert_close(ref_scale, ops_scale)
|
|
torch.testing.assert_close(ref_out.to(dtype=torch.float32),
|
|
ops_out.to(dtype=torch.float32))
|
|
|
|
|
|
# Regression test for a case with large activations where an int32 index cannot
|
|
# represent the number of elements.
|
|
@torch.inference_mode()
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
def test_fp8_quant_large(seed: int) -> None:
|
|
torch.random.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
num_tokens = 1024000 # Mistral-Nemo's max_position_embeddings
|
|
hidden_size = 1152 # Smallest hidden_size to reproduce the error
|
|
dtype = torch.bfloat16
|
|
|
|
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
|
|
ref_out, scale = ref_dynamic_per_tensor_fp8_quant(x)
|
|
ops_out, _ = ops.scaled_fp8_quant(x, scale)
|
|
|
|
# Minimize memory footprint in this test by freeing x and upconverting
|
|
# the outputs in place. (torch.allclose does not support fp8)
|
|
del x
|
|
ref_out = ref_out.to(dtype=dtype)
|
|
ops_out = ops_out.to(dtype=dtype)
|
|
|
|
torch.testing.assert_close(ref_out, ops_out)
|