vllm/tests/compile/test_fusion.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

119 lines
4.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from compressed_tensors.quantization import FP8_DTYPE
import vllm.envs as envs
from vllm.compilation.fusion import (FUSED_OPS, QUANT_OPS, FusedRMSQuantKey,
FusionPass, QuantKey)
from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe
from vllm.compilation.reshapes import RedundantReshapesPass
from vllm.config import CompilationConfig
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
apply_fp8_linear)
from .backend import TestBackend
class TestModel(torch.nn.Module):
def __init__(self, hidden_size: int, eps: float, static: bool, *args,
**kwargs):
super().__init__(*args, **kwargs)
self.norm = [RMSNorm(hidden_size, eps) for _ in range(3)]
self.wscale = [torch.rand(1, dtype=torch.float32) for _ in range(2)]
if static:
self.scale = [torch.rand(1, dtype=torch.float32) for _ in range(2)]
else:
self.scale = [None for _ in range(2)]
self.w = [
torch.rand(hidden_size, hidden_size).to(dtype=FP8_DTYPE).t()
for _ in range(2)
]
def forward(self, x):
resid = torch.sqrt(x)
y = self.norm[0](x)
x2 = apply_fp8_linear(y,
self.w[0],
self.wscale[0],
self.scale[0],
use_per_token_if_dynamic=True)
# make sure resid is used for replacement to work
y2, resid = self.norm[1](x2, resid)
x3 = apply_fp8_linear(y2,
self.w[1],
self.wscale[1],
self.scale[1],
use_per_token_if_dynamic=True)
y3, resid = self.norm[2](x3, resid) # use resid here
return y3
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("hidden_size", [64, 3392, 4096])
@pytest.mark.parametrize("num_tokens", [7, 256, 533, 2048, 2049])
@pytest.mark.parametrize("eps", [1e-5, 1e-6])
@pytest.mark.parametrize("static", [True, False])
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE != "cuda",
reason="Only test on CUDA")
def test_fusion_rmsnorm_quant(dtype, hidden_size, num_tokens, eps, static):
torch.set_default_device("cuda")
torch.set_default_dtype(dtype)
torch.manual_seed(1)
# Reshape pass is needed for the fusion pass to work
config = CompilationConfig.PassConfig(enable_fusion=True,
enable_reshape=True)
reshape_pass = RedundantReshapesPass(config)
fusion_pass = FusionPass.instance(config)
backend = TestBackend(reshape_pass, fusion_pass)
model = TestModel(hidden_size, eps, static)
# First dimension dynamic
x = torch.rand(num_tokens, hidden_size)
torch._dynamo.mark_dynamic(x, 0)
result = model(x)
model2 = torch.compile(model, backend=backend)
result2 = model2(x)
# Higher tol for dynamic, even higher for bfloat16
if static:
ATOL, RTOL = (1e-3, 1e-3)
elif dtype == torch.float16:
ATOL, RTOL = (2e-3, 2e-3)
else:
ATOL, RTOL = (1e-2, 1e-2)
torch.testing.assert_close(result, result2, atol=ATOL, rtol=RTOL)
# Check substitution worked
pre_nodes = backend.graph_pre_pass.nodes
post_nodes = backend.graph_post_pass.nodes
# static is per-tensor, dynamic is per-token
key = QuantKey(dtype=FP8_DTYPE,
static=static,
per_tensor=static,
symmetric=True)
rms_quant = FUSED_OPS[FusedRMSQuantKey(key, False)]
add_rms_quant = FUSED_OPS[FusedRMSQuantKey(key, True)]
fp8_quant = QUANT_OPS[key]
# In pre-nodes, fp8 quant should be present and fused kernels should not
assert find_auto_fn_maybe(pre_nodes, rms_quant) is None
assert find_auto_fn_maybe(pre_nodes, add_rms_quant) is None
find_auto_fn(pre_nodes, fp8_quant)
# In post-nodes, fused kernels should be present and fp8 quant should not
find_auto_fn(post_nodes, rms_quant)
find_auto_fn(post_nodes, add_rms_quant)
assert find_auto_fn_maybe(post_nodes, fp8_quant) is None