
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
119 lines
4.3 KiB
Python
119 lines
4.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import pytest
|
|
import torch
|
|
from compressed_tensors.quantization import FP8_DTYPE
|
|
|
|
import vllm.envs as envs
|
|
from vllm.compilation.fusion import (FUSED_OPS, QUANT_OPS, FusedRMSQuantKey,
|
|
FusionPass, QuantKey)
|
|
from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe
|
|
from vllm.compilation.reshapes import RedundantReshapesPass
|
|
from vllm.config import CompilationConfig
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
|
apply_fp8_linear)
|
|
|
|
from .backend import TestBackend
|
|
|
|
|
|
class TestModel(torch.nn.Module):
|
|
|
|
def __init__(self, hidden_size: int, eps: float, static: bool, *args,
|
|
**kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.norm = [RMSNorm(hidden_size, eps) for _ in range(3)]
|
|
self.wscale = [torch.rand(1, dtype=torch.float32) for _ in range(2)]
|
|
if static:
|
|
self.scale = [torch.rand(1, dtype=torch.float32) for _ in range(2)]
|
|
else:
|
|
self.scale = [None for _ in range(2)]
|
|
self.w = [
|
|
torch.rand(hidden_size, hidden_size).to(dtype=FP8_DTYPE).t()
|
|
for _ in range(2)
|
|
]
|
|
|
|
def forward(self, x):
|
|
resid = torch.sqrt(x)
|
|
y = self.norm[0](x)
|
|
|
|
x2 = apply_fp8_linear(y,
|
|
self.w[0],
|
|
self.wscale[0],
|
|
self.scale[0],
|
|
use_per_token_if_dynamic=True)
|
|
# make sure resid is used for replacement to work
|
|
y2, resid = self.norm[1](x2, resid)
|
|
|
|
x3 = apply_fp8_linear(y2,
|
|
self.w[1],
|
|
self.wscale[1],
|
|
self.scale[1],
|
|
use_per_token_if_dynamic=True)
|
|
y3, resid = self.norm[2](x3, resid) # use resid here
|
|
return y3
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
@pytest.mark.parametrize("hidden_size", [64, 3392, 4096])
|
|
@pytest.mark.parametrize("num_tokens", [7, 256, 533, 2048, 2049])
|
|
@pytest.mark.parametrize("eps", [1e-5, 1e-6])
|
|
@pytest.mark.parametrize("static", [True, False])
|
|
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE != "cuda",
|
|
reason="Only test on CUDA")
|
|
def test_fusion_rmsnorm_quant(dtype, hidden_size, num_tokens, eps, static):
|
|
torch.set_default_device("cuda")
|
|
torch.set_default_dtype(dtype)
|
|
torch.manual_seed(1)
|
|
|
|
# Reshape pass is needed for the fusion pass to work
|
|
config = CompilationConfig.PassConfig(enable_fusion=True,
|
|
enable_reshape=True)
|
|
reshape_pass = RedundantReshapesPass(config)
|
|
fusion_pass = FusionPass.instance(config)
|
|
|
|
backend = TestBackend(reshape_pass, fusion_pass)
|
|
model = TestModel(hidden_size, eps, static)
|
|
|
|
# First dimension dynamic
|
|
x = torch.rand(num_tokens, hidden_size)
|
|
torch._dynamo.mark_dynamic(x, 0)
|
|
|
|
result = model(x)
|
|
|
|
model2 = torch.compile(model, backend=backend)
|
|
result2 = model2(x)
|
|
|
|
# Higher tol for dynamic, even higher for bfloat16
|
|
if static:
|
|
ATOL, RTOL = (1e-3, 1e-3)
|
|
elif dtype == torch.float16:
|
|
ATOL, RTOL = (2e-3, 2e-3)
|
|
else:
|
|
ATOL, RTOL = (1e-2, 1e-2)
|
|
|
|
torch.testing.assert_close(result, result2, atol=ATOL, rtol=RTOL)
|
|
|
|
# Check substitution worked
|
|
pre_nodes = backend.graph_pre_pass.nodes
|
|
post_nodes = backend.graph_post_pass.nodes
|
|
|
|
# static is per-tensor, dynamic is per-token
|
|
key = QuantKey(dtype=FP8_DTYPE,
|
|
static=static,
|
|
per_tensor=static,
|
|
symmetric=True)
|
|
rms_quant = FUSED_OPS[FusedRMSQuantKey(key, False)]
|
|
add_rms_quant = FUSED_OPS[FusedRMSQuantKey(key, True)]
|
|
fp8_quant = QUANT_OPS[key]
|
|
|
|
# In pre-nodes, fp8 quant should be present and fused kernels should not
|
|
assert find_auto_fn_maybe(pre_nodes, rms_quant) is None
|
|
assert find_auto_fn_maybe(pre_nodes, add_rms_quant) is None
|
|
find_auto_fn(pre_nodes, fp8_quant)
|
|
|
|
# In post-nodes, fused kernels should be present and fp8 quant should not
|
|
find_auto_fn(post_nodes, rms_quant)
|
|
find_auto_fn(post_nodes, add_rms_quant)
|
|
assert find_auto_fn_maybe(post_nodes, fp8_quant) is None
|