vllm/vllm/lora/models.py
Swapnil Parekh 4d6ada947c
[CORE] Adding support for insertion of soft-tuned prompts (#4645)
Co-authored-by: Swapnil Parekh <swapnilp@ibm.com>
Co-authored-by: Joe G <joseph.granados@h2o.ai>
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-07-09 13:26:36 -07:00

840 lines
36 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import copy
import json
import math
import os
import re
from dataclasses import dataclass, field
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
import safetensors.torch
import torch
from torch import nn
from vllm.adapter_commons.models import (AdapterLRUCache, AdapterModel,
AdapterModelManager)
from vllm.adapter_commons.utils import (add_adapter, deactivate_adapter,
get_adapter, list_adapters,
remove_adapter, set_adapter_mapping)
from vllm.config import LoRAConfig
from vllm.logger import init_logger
from vllm.lora.layers import (BaseLayerWithLoRA,
LinearScalingRotaryEmbeddingWithLora,
LoRAMapping)
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.utils import (from_layer, from_layer_logits_processor,
parse_fine_tuned_lora_name, replace_submodule)
from vllm.model_executor.models.interfaces import SupportsLoRA
from vllm.utils import is_pin_memory_available
logger = init_logger(__name__)
_GLOBAL_LORA_ID = 0
@dataclass
class LongContextLoRAContext:
"""Context for lora adapters that support long context."""
# The scaling factors to support long context lora fine tuned models.
scaling_factors: List[float]
# dimension to apply rotary embedding.
rot_dim: int
# offsets to the sin_cos_cache for each lora_id loaded.
# This value is dynamically modified.
offsets_by_lora_id: Dict[int, int] = field(default_factory=dict)
def convert_mapping(
mapping: LoRAMapping,
lora_index_to_id: List[Optional[int]],
max_loras: int,
vocab_size: int,
extra_vocab_size: int,
long_lora_context: Optional[LongContextLoRAContext] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
Optional[torch.Tensor], List[int]]:
"""Converts LoRAMapping to index tensors.
Args:
mapping: LoRAMapping mapping rows in a batch to LoRA ids.
lora_index_to_id: List mapping LoRA ids to LoRA indices.
max_loras: Maximum number of LoRAs.
vocab_size: Model vocab size.
extra_vocab_size: Extra vocab size each LoRA can have.
long_lora_context: Passed if there are long context lora in a batch.
Returns:
A tuple of tensors:
base_indices: Tensor of shape [batch_size] mapping batch rows to
LoRA indices.
sampler_indices: Tensor of shape [batch_size] mapping requests to
LoRA indices for sampler. For generation, this will be the
same as base_indicies. For prefill, this will map requests
to LoRA indices.
sampler_indices_padded: Tensor of shape [batch_size] mapping
requests to LoRA indices for sampler with padding.
Same as sampler_indicies, but -1 is replaced with
max_loras.
embeddings_indices: Tensor of shape [2, batch_size] mapping
requests to embedding indices. First row is for embeddings
added by the LoRAs, second row is for the LoRA.lora_a
embeddings.
long_lora_indices: Tensor of shape [batch_size] mapping
requests to RoPE offsets and rot dims for long LoRAs.
None if long context lora doesn't exist.
indices_len: List of lengths of the above tensors.
Used to index into each tensor. It contains length for
(base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices, long_lora_indices). If long_lora doesn't
exist, it only contains first 4 entries.
"""
index_mapping_indices: List[int] = list(mapping.index_mapping).copy()
embedding_indices = index_mapping_indices.copy()
lora_indices = index_mapping_indices.copy()
long_lora_offsets: Optional[torch.Tensor] = None
if long_lora_context:
long_lora_offsets = torch.zeros(len(index_mapping_indices),
device="cuda",
dtype=torch.long)
prompt_mapping: List[int] = [
lora_index_to_id.index(x) if x > 0 else -1
for x in mapping.prompt_mapping
]
lora_idx = None
for i in range(len(index_mapping_indices)):
# TODO index can be slow. optimize
lora_idx = (lora_index_to_id.index(index_mapping_indices[i])
if index_mapping_indices[i] > 0 else -1)
embedding_indices[i] = lora_idx if index_mapping_indices[i] > 0 else 0
lora_indices[i] = lora_idx
if long_lora_context:
assert long_lora_offsets is not None
lora_offset: int = long_lora_context.offsets_by_lora_id.get(
index_mapping_indices[i], 0)
long_lora_offsets[i] = lora_offset
indices_list: List[Union[List[int], torch.Tensor]] = [
index_mapping_indices, lora_indices, embedding_indices
]
if long_lora_context:
assert long_lora_offsets is not None
indices_list.append(long_lora_offsets)
indices = torch.tensor(indices_list, dtype=torch.long, device="cuda")
prompt_mapping_tensor = torch.tensor(prompt_mapping,
device="cuda",
dtype=torch.long)
embeddings_indices = torch.stack([
indices[2] * extra_vocab_size,
indices[2] * (vocab_size + extra_vocab_size)
])
embeddings_indices[embeddings_indices == -1] = max_loras - 1
base_indices = indices[1]
sampler_indices = prompt_mapping_tensor
sampler_indices_padded = sampler_indices.clone()
sampler_indices_padded[sampler_indices_padded == -1] = max_loras - 1
sampler_indices_padded = (
torch.arange(
0, len(sampler_indices_padded), device="cuda", dtype=torch.long) +
(sampler_indices_padded * len(sampler_indices_padded)))
long_lora_indices = None
long_lora_indices_len: Optional[int] = None
if long_lora_context:
long_lora_indices = indices[3]
long_lora_indices_len = long_lora_indices.shape[-1]
# Contain length of indices tensors. Used to index into each tensor.
indices_len = [
base_indices.shape[-1], sampler_indices.shape[-1],
sampler_indices_padded.shape[-1], embeddings_indices.shape[-1]
]
if long_lora_indices_len is not None:
indices_len.append(long_lora_indices_len)
return (base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices, long_lora_indices, indices_len)
def get_lora_id():
global _GLOBAL_LORA_ID
_GLOBAL_LORA_ID += 1
return _GLOBAL_LORA_ID
class LoRAModel(AdapterModel):
"""A LoRA fine-tuned model."""
def __init__(
self,
lora_model_id: int,
rank: int,
loras: Dict[str, LoRALayerWeights],
scaling_factor: Optional[float] = None,
) -> None:
"""
Args:
lora_model_id: The integer id for the lora model.
rank: lora rank.
loras: module name -> weights for lora-replaced layers.
scaling_factor: Scaling factor to support long context lora model.
None if the lora is not tuned for long context support.
"""
self.id = lora_model_id
# Scaling factor for long context lora model. None if it is not
# fine tuned for the long context.
self.scaling_factor = scaling_factor
assert (lora_model_id >
0), f"a valid lora id should be greater than 0, got {self.id}"
self.rank = rank
self.loras: Dict[str, LoRALayerWeights] = loras
def clone(self, lora_model_id: int) -> "LoRAModel":
"""Return a copy of the object with different ids.
Will share the underlying tensors."""
return self.__class__(
lora_model_id,
rank=self.rank,
loras=self.loras.copy(),
)
@property
def extra_vocab_size(self) -> int:
return max(lora.extra_vocab_size
for lora in self.loras.values()) if self.loras else 0
def get_lora(self, module_name: str) -> Optional[LoRALayerWeights]:
"""Get LoRA for a given module by name"""
return self.loras.get(module_name, None)
# (yard1): TODO see if we can derive target_embedding_padding automatically
@classmethod
def from_lora_tensors(
cls,
lora_model_id: int,
rank: int,
lora_alpha: int,
tensors: Dict[str, torch.Tensor],
device: str = "cuda",
dtype: Optional[torch.dtype] = None,
embeddings: Optional[Dict[str, torch.Tensor]] = None,
target_embedding_padding: Optional[int] = None,
scaling_factor: Optional[float] = None,
embedding_modules: Optional[Dict[str, str]] = None,
embedding_padding_modules: Optional[List[str]] = None,
) -> "LoRAModel":
"""Create a LoRAModel from a dictionary of tensors."""
pin_memory = str(device) == "cpu" and is_pin_memory_available()
loras: Dict[str, LoRALayerWeights] = {}
for tensor_name, tensor in tensors.items():
module_name, is_lora_a = parse_fine_tuned_lora_name(tensor_name)
if module_name not in loras:
lora_embeddings_tensor = None
if embeddings:
assert embedding_modules is not None
embeddings_module = next(
(k for k in embedding_modules if k in module_name),
None)
if embeddings_module:
lora_embeddings_tensor = embeddings[
embedding_modules[embeddings_module]].to(
device=device, dtype=dtype)
if pin_memory:
lora_embeddings_tensor = (
lora_embeddings_tensor.pin_memory())
loras[module_name] = LoRALayerWeights(module_name, rank,
lora_alpha, None, None,
lora_embeddings_tensor)
if is_lora_a:
loras[module_name].lora_a = tensor.to(device=device,
dtype=dtype).t()
if pin_memory:
loras[module_name].lora_a = loras[
module_name].lora_a.pin_memory()
else:
loras[module_name].lora_b = tensor.to(device=device,
dtype=dtype).t()
assert embedding_padding_modules is not None
if any(name in module_name
for name in embedding_padding_modules
) and target_embedding_padding is not None:
lora_b = loras[module_name].lora_b
assert target_embedding_padding >= lora_b.shape[1]
addition = target_embedding_padding - lora_b.shape[1]
loras[module_name].lora_b = torch.nn.functional.pad(
lora_b, (0, addition))
if pin_memory:
loras[module_name].lora_b = loras[
module_name].lora_b.pin_memory()
for lora in loras.values():
lora.optimize()
return cls(lora_model_id, rank, loras, scaling_factor=scaling_factor)
@classmethod
def from_local_checkpoint(
cls,
lora_dir: str,
expected_lora_modules: List[str],
*,
max_position_embeddings: Optional[int] = None,
lora_model_id: Optional[int] = None,
device: str = "cuda",
dtype: Optional[torch.dtype] = None,
target_embedding_padding: Optional[int] = None,
embedding_modules: Optional[Dict[str, str]] = None,
embedding_padding_modules: Optional[List[str]] = None,
) -> "LoRAModel":
"""Create a LoRAModel from a local checkpoint.
Args:
lora_dir: The local path that has lora data.
expected_lora_modules: Name of modules that are expected to be
replaced by lora.
max_position_embeddings: Max position embedding length. Used to
scaling the largest context length. If None, the lora model's
context length is not scaled.
lora_model_id: Lora model id. If not given, automatically set by
a global counter.
device: Device where the lora model is loaded.
dtype: dtype of the lora model weights.
Returns:
Loaded LoRA Model.
"""
lora_config_path = os.path.join(lora_dir, "adapter_config.json")
lora_tensor_path = os.path.join(lora_dir, "adapter_model.safetensors")
lora_bin_file_path = os.path.join(lora_dir, "adapter_model.bin")
new_embeddings_tensor_path = os.path.join(
lora_dir, "new_embeddings.safetensors")
new_embeddings_bin_file_path = os.path.join(lora_dir,
"new_embeddings.bin")
with open(lora_config_path) as f:
config = json.load(f)
if os.path.isfile(lora_tensor_path):
tensors: Dict[str, torch.Tensor] = {}
# Find unexpected modules.
# Use safetensor key as a source of truth to find expected modules.
# in peft if you have target_modules A, B, C and C does not exist
# in the model it wont error and model will be trained with A, B
# loraified. C wont exist in the safetensor but it will exist in
# the target_modules of the adapter_config.json.
unexpected_modules = []
with safetensors.safe_open(lora_tensor_path,
framework="pt") as f: # type: ignore
for lora_module in f.keys(): # noqa
module_name, _ = parse_fine_tuned_lora_name(lora_module)
part_name = module_name.split(".")[-1]
if part_name not in expected_lora_modules:
unexpected_modules.append(module_name)
if unexpected_modules:
raise ValueError(
f"While loading {lora_dir}, expected"
f" target modules in {expected_lora_modules}"
f" but received {unexpected_modules}."
f" Please verify that the loaded LoRA module is correct"
)
# Load tensors if there are only expected modules.
for module in f.keys(): # noqa
tensors[module] = f.get_tensor(module)
elif os.path.isfile(lora_bin_file_path):
# When a bin file is provided, we rely on config to find unexpected
# modules.
unexpected_modules = []
target_modules = config["target_modules"]
for module in target_modules:
# Compatible with more modules,
# such as:layers.11.self_attn.k_proj
part_name = module.split(".")[-1]
if part_name not in expected_lora_modules:
unexpected_modules.append(module)
# loaded lora's target modules must be a subset of
# expected_lora_modules. It is not reliable. See
# https://github.com/vllm-project/vllm/pull/5909. But there's no
# other better mechanism.
if unexpected_modules:
print(unexpected_modules, "modules")
raise ValueError(
f"While loading {lora_dir}, expected"
f" target modules in {expected_lora_modules}"
f" but received {unexpected_modules}."
f" Please verify that the loaded LoRA module is correct")
tensors = torch.load(lora_bin_file_path)
else:
raise ValueError(f"{lora_dir} doesn't contain tensors")
embeddings = None
if os.path.isfile(new_embeddings_tensor_path):
embeddings = safetensors.torch.load_file(
new_embeddings_tensor_path)
elif os.path.isfile(new_embeddings_bin_file_path):
embeddings = torch.load(new_embeddings_bin_file_path)
rank = config["r"]
lora_alpha = config["lora_alpha"]
context_length = config.get("context_length", None)
scaling_factor = None
if context_length:
if max_position_embeddings is None:
max_position_embeddings = context_length
scaling_factor = float(
math.ceil(context_length / max_position_embeddings))
return cls.from_lora_tensors(
lora_model_id=get_lora_id()
if lora_model_id is None else lora_model_id,
rank=rank,
lora_alpha=lora_alpha,
tensors=tensors,
device=device,
dtype=dtype,
embeddings=embeddings,
target_embedding_padding=target_embedding_padding,
scaling_factor=scaling_factor,
embedding_modules=embedding_modules,
embedding_padding_modules=embedding_padding_modules,
)
class LoRAModelManager(AdapterModelManager):
"""A manager that manages multiple LoRA-fine-tuned models."""
def __init__(
self,
model: SupportsLoRA,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
):
"""Create a LoRAModelManager and adapter for a given model.
Args:
model: the model to be adapted.
max_num_seqs: the maximum number of sequences model can run in a
single batch.
max_num_batched_tokens: the maximum number of tokens model can run
in a single batch.
vocab_size: the vocab size of the model.
lora_config: the LoRA configuration.
"""
self.lora_config = lora_config
self.max_num_seqs = max_num_seqs
assert self.capacity >= self.lora_slots
self.max_num_batched_tokens = math.ceil(max_num_batched_tokens / 8) * 8
self.lora_index_to_id: List[Optional[int]] = [None] * self.lora_slots
self.vocab_size = vocab_size
self.long_lora_context: Optional[LongContextLoRAContext] = None
self.base_indices = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.sampler_indices = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.sampler_indices_padded = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.embeddings_indices = torch.empty(2,
self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.long_lora_indices = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
# Scaling factor -> offset to the sin_cos_cache to it.
# Used for long context lora.
self.scaling_factor_to_offset: Dict[float, int] = {}
# 4 is the number of indicies tensors defined above
# base_indices, sampler_indices, sampler_indices_padded,
# embeddings_indices
self.indices_len: List[Optional[int]] = [None] * 4
super().__init__(model)
if hasattr(self.model, "supported_lora_modules"):
self.supported_lora_modules = copy.deepcopy(
self.model.supported_lora_modules)
if lora_config.long_lora_scaling_factors:
# We need to replace rotary emb layer to do batch computation
# for long lora.
self.supported_lora_modules.append("rotary_emb")
self.packed_modules_mapping = copy.deepcopy(
self.model.packed_modules_mapping)
self.packed_modules: Dict[str, List[str]] = {}
self.modules: Dict[str, "BaseLayerWithLoRA"] = {}
# Dict instead of a Set for compatibility with LRUCache.
self._last_mapping: Optional[LoRAMapping] = None
self._create_lora_modules()
self.model.lora_manager = self
self.adapter_type = 'LoRa'
@property
def capacity(self) -> int:
return self.lora_config.max_cpu_loras
@property
def lora_slots(self) -> int:
return self.lora_config.max_loras
@property
def adapter_slots(self) -> int:
return self.lora_slots
def activate_adapter(
self,
lora_id: int,
) -> bool:
"""Move LoRA into a GPU buffer to be used in the forward pass."""
if lora_id in self._active_adapters:
return False
first_free_slot = next(
((i, lora_id) for i, lora_id in enumerate(self.lora_index_to_id)
if lora_id is None), None)
if first_free_slot is None:
raise ValueError("No free lora slots")
index, _ = first_free_slot
self._active_adapters[lora_id] = None
lora_model = self._registered_adapters[lora_id]
logger.debug("Activating LoRA. int id: %d, slot index: %d",
lora_model.id, index)
self.lora_index_to_id[index] = lora_model.id
for module_name, module in self.modules.items():
module_lora = lora_model.get_lora(module_name)
if module_lora:
module_lora.optimize()
module.set_lora(index, module_lora.lora_a, module_lora.lora_b,
module_lora.embeddings_tensor)
else:
module.reset_lora(index)
return True
def _deactivate_adapter(self, lora_id: int):
try:
index = self.lora_index_to_id.index(lora_id)
self.lora_index_to_id[index] = None
except ValueError:
pass
def _set_long_lora_context(self, lora: LoRAModel):
if self.long_lora_context is None:
return
if lora.scaling_factor is None:
return
if (lora.scaling_factor not in self.scaling_factor_to_offset):
raise ValueError(f"Long LoRA scaling factor {lora.scaling_factor}"
" has not been initialized.")
offsets = self.scaling_factor_to_offset.get(lora.scaling_factor)
if offsets:
self.long_lora_context.offsets_by_lora_id[lora.id] = offsets
def _add_adapter(self, lora: LoRAModel):
self._create_merged_loras_inplace(lora)
self._registered_adapters[lora.id] = lora
self._set_long_lora_context(lora)
def pin_adapter(self, lora_id: int) -> bool:
"""Pin a LoRAModel in the manager cache."""
raise NotImplementedError(
"Pinning is not supported in LoRAModelManager."
"Use LRUCacheLoRAModelManager for pinning") # type: ignore
# TODO see if this can be vectorized
def _set_adapter_mapping(self, mapping: LoRAMapping) -> None:
(base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices, long_lora_offsets_tensor,
indices_len) = convert_mapping(mapping, self.lora_index_to_id,
self.lora_slots + 1, self.vocab_size,
self.lora_config.lora_extra_vocab_size,
self.long_lora_context)
self.base_indices[:base_indices.shape[0]].copy_(base_indices)
self.sampler_indices[:sampler_indices.shape[0]].copy_(sampler_indices)
self.sampler_indices_padded[:sampler_indices_padded.shape[0]].copy_(
sampler_indices_padded)
self.embeddings_indices[:embeddings_indices.
shape[0], :embeddings_indices.shape[1]].copy_(
embeddings_indices)
if long_lora_offsets_tensor is not None:
self.long_lora_indices[:long_lora_offsets_tensor.shape[0]].copy_(
long_lora_offsets_tensor)
else:
self.long_lora_indices.zero_()
# Maintain the reference
self.indices_len[:] = indices_len
def remove_all_adapters(self):
"""Remove all LoRAModels from the manager."""
self._registered_adapters.clear()
self.lora_index_to_id = [None] * self.lora_slots
self._active_adapters.clear()
def _create_lora_modules(self):
for module_name, module in self.model.named_modules(
remove_duplicate=False):
if not self._match_target_modules(module_name):
continue
parts = module_name.split(".")[-1]
packed_moduled_lst = self.packed_modules_mapping.get(parts, [])
new_module = replace_submodule(
self.model, module_name,
from_layer(module, self.lora_slots, self.lora_config,
packed_moduled_lst, self.model.config))
# LinearScalingRotaryEmbeddingWithLora is used to handle
# long context lora. Register relevant metadata.
if isinstance(new_module, LinearScalingRotaryEmbeddingWithLora):
self.long_lora_context = LongContextLoRAContext(
new_module.scaling_factors, new_module.rotary_dim)
self.scaling_factor_to_offset = \
new_module.scaling_factor_to_offset
# (yard1): TODO make this more robust
if "lm_head" in module_name:
logits_processor_module = self.model.get_submodule(
"logits_processor")
new_module = replace_submodule(
self.model, "logits_processor",
from_layer_logits_processor(logits_processor_module,
module, self.lora_slots,
self.lora_config,
self.model.config))
self.register_module(module_name, new_module)
self._register_packed_modules(module_name)
new_module.set_mapping(self.base_indices, self.sampler_indices,
self.sampler_indices_padded,
self.embeddings_indices,
self.long_lora_indices, self.indices_len)
def register_module(self, module_name: str, module: "BaseLayerWithLoRA"):
assert isinstance(module, BaseLayerWithLoRA)
self.modules[module_name] = module
def create_dummy_lora(
self,
lora_id: int,
rank: int,
scaling_factor: Optional[float],
embedding_modules: Optional[Dict[str, str]] = None) -> LoRAModel:
"""Create zero-initialized LoRAModel for warmup."""
model = LoRAModel(lora_id, rank, {}, scaling_factor)
for module_name, module in self.model.named_modules():
if not self._match_target_modules(module_name) or not isinstance(
module, BaseLayerWithLoRA) or isinstance(
module, LinearScalingRotaryEmbeddingWithLora):
continue
parts = module_name.split(".")
if module_name not in self.packed_modules:
assert embedding_modules is not None
if parts[-1] in embedding_modules:
input_dim = (module.base_layer.org_vocab_size +
self.lora_config.lora_extra_vocab_size if
hasattr(module.base_layer, "org_vocab_size")
else module.base_layer.weight.shape[1])
output_dim = module.base_layer.embedding_dim if hasattr(
module.base_layer,
"embedding_dim") else module.base_layer.weight.shape[0]
embeddings_tensor_dim = (module.base_layer.embedding_dim if
hasattr(module.base_layer,
"embedding_dim") else
module.base_layer.weight.shape[1])
lora = LoRALayerWeights.create_dummy_lora_weights(
module_name,
input_dim,
output_dim,
rank,
module.lora_a_stacked.dtype,
"cpu",
embeddings_tensor_dim=embeddings_tensor_dim)
else:
lora = LoRALayerWeights.create_dummy_lora_weights(
module_name,
module.lora_a_stacked.shape[-1],
module.lora_b_stacked.shape[-2],
rank,
module.lora_a_stacked.dtype,
"cpu",
)
lora.optimize()
else:
parts = module_name.split(".")
replacements = self.packed_modules_mapping[parts[-1]]
subloras: List[Optional["LoRALayerWeights"]] = []
for i, r in enumerate(replacements):
lora = LoRALayerWeights.create_dummy_lora_weights(
module_name + "." + r,
module.lora_a_stacked[i].shape[-1],
module.lora_b_stacked[i].shape[-2],
rank,
module.lora_a_stacked[i].dtype,
"cpu",
)
lora.optimize()
subloras.append(lora)
lora = PackedLoRALayerWeights.pack(subloras)
model.loras[module_name] = lora
return model
def _match_target_modules(self, module_name: str):
return any(
re.match(
r".*\.{target_module}$".format(target_module=target_module),
module_name) or target_module == module_name
for target_module in self.supported_lora_modules)
def _register_packed_modules(self, module_full_name: str) -> None:
parts = module_full_name.split(".")
module_name = parts[-1]
replacements = self.packed_modules_mapping.get(module_name, [])
# When replacements is less than or equal to 1, it indicates that this
# module is not a packed module.
if len(replacements) <= 1:
return
prefix = ".".join(parts[:-1])
self.packed_modules[module_full_name] = [
prefix + "." + r if prefix else r for r in replacements
]
def _create_merged_loras_inplace(self, lora_model: LoRAModel) -> None:
for module_name, new_module_names in self.packed_modules.items():
replacement_loras: List[Optional[LoRALayerWeights]] = []
has_replacement = False
for r in new_module_names:
lora = lora_model.get_lora(r)
replacement_loras.append(lora)
if lora:
has_replacement = True
if not has_replacement:
continue
for i in range(len(replacement_loras)):
if replacement_loras[i]:
continue
replacement_loras[i] = None
lora_model.loras[module_name] = PackedLoRALayerWeights.pack(
replacement_loras)
def deactivate_adapter(self, adapter_id: int) -> bool:
return deactivate_adapter(adapter_id, self._active_adapters,
self._deactivate_adapter)
def add_adapter(self, adapter: LoRAModel) -> bool:
logger.debug(
"Adding lora. Model id: %d, "
"int id: %d, "
"scaling factor: %s", adapter.id, adapter.id,
adapter.scaling_factor)
return add_adapter(adapter, self._registered_adapters, self.capacity,
self._add_adapter)
def set_adapter_mapping(self, mapping: LoRAMapping) -> None:
self._last_mapping = set_adapter_mapping(mapping, self._last_mapping,
self._set_adapter_mapping)
def remove_adapter(self, adapter_id: int) -> bool:
return remove_adapter(adapter_id, self._registered_adapters,
self.deactivate_adapter)
def list_adapters(self) -> Dict[int, Any]:
return list_adapters(self._registered_adapters)
def get_adapter(self, adapter_id: int) -> Optional[Any]:
return get_adapter(adapter_id, self._registered_adapters)
class LoRALRUCache(AdapterLRUCache[LoRAModel]):
def __init__(self, capacity: int, deactivate_lora_fn: Callable[[int],
bool]):
super().__init__(capacity, deactivate_lora_fn)
class LRUCacheLoRAModelManager(LoRAModelManager):
"""A model manager that manages multiple LoRAs with LRU cache."""
def __init__(
self,
model: nn.Module,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
):
super().__init__(model, max_num_seqs, max_num_batched_tokens,
vocab_size, lora_config)
self._registered_adapters: LoRALRUCache = LoRALRUCache(
self.capacity, self.deactivate_adapter)
self._active_adapters: LoRALRUCache = LoRALRUCache(
self.lora_slots, self._deactivate_adapter)
def list_adapters(self) -> Dict[int, LoRAModel]:
"""List all registered LoRAModels."""
return dict(self._registered_adapters.cache)
def add_adapter(self, lora: LoRAModel) -> bool:
"""Add a LoRAModel to the manager."""
logger.debug(
"Adding lora. Model id: %d, "
"int id: %d, "
"scaling factor: %s", lora.id, lora.id, lora.scaling_factor)
if lora.id not in self._registered_adapters:
self._add_adapter(lora)
was_added = True
else:
# We always touch to update the LRU cache order
self._registered_adapters.touch(lora.id)
was_added = False
return was_added
def activate_adapter(
self,
lora_id: int,
) -> bool:
if lora_id not in self._active_adapters and len(
self._active_adapters) >= self.lora_slots:
self._active_adapters.remove_oldest()
result = super().activate_adapter(lora_id)
# We always touch to update the LRU cache order
self._active_adapters.touch(lora_id)
return result
def remove_oldest_adapter(self) -> bool:
if len(self._registered_adapters) > 0:
self._registered_adapters.remove_oldest()
return True
return False
def pin_adapter(self, lora_id: int) -> bool:
"""Pin a LoRAModel in the manager cache."""
self._pin_lora_in_cpu_cache(lora_id)
self._pin_lora_in_gpu_cache(lora_id)
return True
def _pin_lora_in_cpu_cache(self, lora_id: int):
try:
self._registered_adapters.pin(lora_id)
except ValueError as err:
raise ValueError("Pinning failed. "
f"LoRA {lora_id} is not registered.") from err
def _pin_lora_in_gpu_cache(self, lora_id: int):
if lora_id not in self._active_adapters:
# move lora to gpu if not already active
self.activate_adapter(lora_id)
self._active_adapters.pin(lora_id)
def create_lora_manager(
model: nn.Module,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
lora_manager_cls: Type[LoRAModelManager] = LoRAModelManager,
**kwargs) -> LoRAModelManager:
"""Create a LoRA adapter for a given model."""
if not hasattr(model, "supported_lora_modules"):
raise ValueError(f"Model {type(model)} is not supported for LoRA.")
lora_manager = lora_manager_cls(
model=model,
max_num_seqs=max_num_seqs,
max_num_batched_tokens=max_num_batched_tokens,
vocab_size=vocab_size,
lora_config=lora_config,
**kwargs)
return lora_manager