vllm/vllm/attention/backends/torch_sdpa.py

257 lines
9.6 KiB
Python

""" Attention layer with torch scaled_dot_product_attention
and PagedAttention."""
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Type
import torch
from torch.nn.functional import scaled_dot_product_attention
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionMetadata)
from vllm.attention.ops.paged_attn import (PagedAttention,
PagedAttentionMetadata)
class TorchSDPABackend(AttentionBackend):
@staticmethod
def get_impl_cls() -> Type["TorchSDPABackendImpl"]:
return TorchSDPABackendImpl
@staticmethod
def make_metadata(*args, **kwargs) -> "TorchSDPAMetadata":
return TorchSDPAMetadata(*args, **kwargs)
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
num_kv_heads, head_size)
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: Dict[int, int],
) -> None:
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: Dict[int, List[int]],
) -> None:
PagedAttention.copy_blocks(kv_caches, src_to_dists)
@dataclass
class TorchSDPAMetadata(AttentionMetadata, PagedAttentionMetadata):
"""Metadata for TorchSDPABackend.
"""
# Currently, input sequences can only contain all prompts
# or all decoding. True if all sequences are prompts.
is_prompt: bool
slot_mapping: torch.Tensor
prompt_lens: Optional[List[int]]
prompt_lens_tensor: Optional[torch.Tensor]
num_prompt_tokens: int
num_generation_tokens: int
max_subquery_len: Optional[int] = None
max_prompt_len: Optional[int] = None
subquery_start_loc: Optional[torch.Tensor] = None
seq_start_loc: Optional[torch.Tensor] = None
use_cuda_graph: bool = False
def __post_init__(self):
# Set during the execution of the first attention op.
# It is a list because it is needed to set per prompt
# when alibi slopes is used. It is because of the limitation
# from xformer API.
# will not appear in the __repr__ and __init__
self.attn_bias: Optional[List[torch.Tensor]] = None
class TorchSDPABackendImpl(AttentionImpl):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: Optional[int] = None,
alibi_slopes: Optional[List[float]] = None,
sliding_window: Optional[int] = None,
) -> None:
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
self.sliding_window = sliding_window
if alibi_slopes is not None:
assert len(alibi_slopes) == num_heads
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
self.need_mask = (self.alibi_slopes is not None
or self.sliding_window is not None)
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
suppored_head_sizes = PagedAttention.get_supported_head_sizes()
if head_size not in suppored_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by PagedAttention. "
f"Supported head sizes are: {suppored_head_sizes}.")
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: Optional[torch.Tensor],
attn_metadata: TorchSDPAMetadata,
kv_scale: float,
) -> torch.Tensor:
"""Forward pass with torch SDPA and PagedAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
num_tokens, hidden_size = query.shape
# Reshape the query, key, and value tensors.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
if kv_cache is not None:
key_cache, value_cache = PagedAttention.split_kv_cache(
kv_cache, self.num_kv_heads, self.head_size)
PagedAttention.write_to_paged_cache(key, value, key_cache,
value_cache,
attn_metadata.slot_mapping,
attn_metadata.kv_cache_dtype,
kv_scale)
if attn_metadata.is_prompt:
if (kv_cache is None or attn_metadata.block_tables.numel() == 0):
if self.num_kv_heads != self.num_heads:
key = key.repeat_interleave(self.num_queries_per_kv, dim=1)
value = value.repeat_interleave(self.num_queries_per_kv,
dim=1)
if attn_metadata.attn_bias is None:
if self.alibi_slopes is not None:
att_masks = _make_alibi_bias(
self.alibi_slopes, query.dtype,
attn_metadata.prompt_lens) # type: ignore
elif self.sliding_window is not None:
att_masks = _make_sliding_window_bias(
attn_metadata.prompt_lens, self.sliding_window,
query.dtype) # type: ignore
else:
att_masks = [None] * len(attn_metadata.prompt_lens)
attn_metadata.attn_bias = att_masks
query = query.movedim(0, query.dim() - 2)
key = key.movedim(0, key.dim() - 2)
value = value.movedim(0, value.dim() - 2)
start = 0
output = torch.empty(
(num_tokens, self.num_heads, self.head_size),
dtype=query.dtype)
for prompt_len, mask in zip(attn_metadata.prompt_lens,
attn_metadata.attn_bias):
end = start + prompt_len
sub_out = scaled_dot_product_attention(
query[:, start:end, :],
key[:, start:end, :],
value[:, start:end, :],
attn_mask=mask,
dropout_p=0.0,
is_causal=not self.need_mask,
scale=self.scale).movedim(query.dim() - 2, 0)
output[start:end, :, :] = sub_out
start = end
else:
# prefix-enabled attention
raise RuntimeError(
"Torch SDPA backend doesn't support prefix decoding.")
else:
# Decoding run.
output = PagedAttention.forward_decode(
query,
key_cache,
value_cache,
attn_metadata.block_tables,
attn_metadata.context_lens,
attn_metadata.max_context_len,
attn_metadata.kv_cache_dtype,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
kv_scale,
)
# Reshape the output tensor.
return output.view(-1, self.num_heads * self.head_size)
def _make_alibi_bias(
alibi_slopes: torch.Tensor,
dtype: torch.dtype,
prompt_lens: List[int],
) -> List[torch.Tensor]:
attn_biases = []
for prompt_len in prompt_lens:
bias = torch.arange(prompt_len, dtype=dtype)
# NOTE(zhuohan): HF uses
# `bias = bias[None, :].repeat(prompt_len, 1)`
# here. We find that both biases give the same results, but
# the bias below more accurately follows the original ALiBi
# paper.
bias = bias[None, :] - bias[:, None]
num_heads = alibi_slopes.shape[0]
bias = bias[None, :].expand(num_heads, prompt_len, prompt_len)
bias.mul_(alibi_slopes[:, None, None])
inf_mask = torch.empty(
(1, prompt_len, prompt_len),
dtype=bias.dtype).fill_(-torch.inf).triu_(diagonal=1)
attn_biases.append((bias + inf_mask).to(dtype))
return attn_biases
def _make_sliding_window_bias(
prompt_lens: List[int],
window_size: Optional[int],
dtype: torch.dtype,
) -> List[torch.Tensor]:
attn_biases = []
for prompt_len in prompt_lens:
tensor = torch.full(
(1, prompt_len, prompt_len),
dtype=dtype,
fill_value=1,
)
shift = 0
mask = torch.tril(tensor, diagonal=shift).to(dtype) # type: ignore
if window_size is not None:
mask = torch.triu(mask, diagonal=shift - window_size + 1)
mask = torch.log(mask)
attn_biases.append(mask.to(dtype))
return attn_biases