vllm/vllm/core/block_manager_v1.py

626 lines
24 KiB
Python

"""A block manager that manages token blocks."""
import math
from abc import ABC, abstractmethod
from itertools import count, takewhile
from os.path import commonprefix
from typing import Dict, List, Optional
from typing import Sequence as GenericSequence
from typing import Set, Tuple
from vllm.block import BlockTable, PhysicalTokenBlock
from vllm.core.evictor_v1 import EvictionPolicy, Evictor, make_evictor
from vllm.core.interfaces import AllocStatus, BlockSpaceManager
from vllm.logger import init_logger
from vllm.sequence import Sequence, SequenceGroup, SequenceStatus
from vllm.utils import Device
logger = init_logger(__name__)
class BlockAllocatorBase(ABC):
"""Manages free physical token blocks for a device.
The allocator maintains a list of free blocks and allocates a block when
requested. When a block is freed, its reference count is decremented. If
the reference count becomes zero, the block is added back to the free list.
"""
@abstractmethod
def __init__(self,
device: Device,
block_size: int,
num_blocks: int,
eviction_policy: EvictionPolicy = EvictionPolicy.LRU):
pass
@abstractmethod
def allocate(self,
block_hash: Optional[int] = None,
num_hashed_tokens: int = 0) -> PhysicalTokenBlock:
pass
@abstractmethod
def free(self, block: PhysicalTokenBlock) -> None:
pass
@abstractmethod
def get_num_free_blocks(self) -> int:
pass
@abstractmethod
def get_num_total_blocks(self) -> int:
pass
@abstractmethod
def contains_block(self, block_hash: int) -> bool:
pass
@abstractmethod
def update_hash(self, block_hash: int, block: PhysicalTokenBlock):
pass
class CachedBlockAllocator(BlockAllocatorBase):
"""Manages free physical token blocks for a device.
The allocator maintains a list of free blocks and allocates a block when
requested. When a block is freed, its reference count is decremented. If
the reference count becomes zero, the block is added back to the free list.
"""
def __init__(self,
device: Device,
block_size: int,
num_blocks: int,
eviction_policy: EvictionPolicy = EvictionPolicy.LRU) -> None:
self.device = device
self.block_size = block_size
self.num_blocks = num_blocks
self.current_num_blocks = 0
self.cached_blocks: Dict[int, PhysicalTokenBlock] = {}
self.evictor: Evictor = make_evictor(eviction_policy)
self.default_hash_ctr = count()
def allocate_block(self, block_hash: int,
num_hashed_tokens: int) -> PhysicalTokenBlock:
if self.current_num_blocks == self.num_blocks:
block = self.evictor.evict()
block.block_hash = block_hash
block.num_hashed_tokens = num_hashed_tokens
return block
block = PhysicalTokenBlock(device=self.device,
block_number=self.current_num_blocks,
block_size=self.block_size,
block_hash=block_hash,
num_hashed_tokens=num_hashed_tokens)
self.current_num_blocks += 1
return block
def allocate(self,
block_hash: Optional[int] = None,
num_hashed_tokens: int = 0) -> PhysicalTokenBlock:
if block_hash is None:
block_hash = next(self.default_hash_ctr)
if block_hash in self.evictor:
assert block_hash not in self.cached_blocks
block = self.evictor.remove(block_hash)
assert block.ref_count == 0
self.cached_blocks[block_hash] = block
block.ref_count += 1
assert block.block_hash == block_hash
return block
if block_hash not in self.cached_blocks:
self.cached_blocks[block_hash] = self.allocate_block(
block_hash, num_hashed_tokens)
block = self.cached_blocks[block_hash]
assert block.block_hash == block_hash
block.ref_count += 1
return block
def free(self, block: PhysicalTokenBlock) -> None:
if block.ref_count == 0:
raise ValueError(f"Double free! {block} is already freed.")
block.ref_count -= 1
if block.ref_count == 0:
assert block.block_hash not in self.evictor
self.evictor.add(block)
# Remove the block from the cached_blocks
del self.cached_blocks[block.block_hash]
def get_num_free_blocks(self) -> int:
return (self.num_blocks - self.current_num_blocks +
self.evictor.num_blocks)
def get_num_total_blocks(self) -> int:
return self.num_blocks
def contains_block(self, block_hash: int) -> bool:
return block_hash in self.cached_blocks or block_hash in self.evictor
def update_hash(self, block_hash: int, block: PhysicalTokenBlock):
# Update the hash of block and the cached_blocks dictionary.
assert not self.contains_block(block_hash)
old_hash = block.block_hash
block.block_hash = block_hash
del self.cached_blocks[old_hash]
self.cached_blocks[block_hash] = block
class UncachedBlockAllocator(BlockAllocatorBase):
"""Manages free physical token blocks for a device.
The allocator maintains a list of free blocks and allocates a block when
requested. When a block is freed, its reference count is decremented. If
the reference count becomes zero, the block is added back to the free list.
"""
def __init__(
self,
device: Device,
block_size: int,
num_blocks: int,
) -> None:
self.device = device
self.block_size = block_size
self.num_blocks = num_blocks
# Initialize the free blocks.
self.free_blocks: BlockTable = []
for i in range(num_blocks):
block = PhysicalTokenBlock(device=device,
block_number=i,
block_size=block_size,
block_hash=-1,
num_hashed_tokens=0)
self.free_blocks.append(block)
def allocate(self,
block_hash: Optional[int] = None,
num_hashed_tokens: int = 0) -> PhysicalTokenBlock:
if not self.free_blocks:
raise ValueError("Out of memory! No free blocks are available.")
block = self.free_blocks.pop()
block.ref_count = 1
return block
def free(self, block: PhysicalTokenBlock) -> None:
if block.ref_count == 0:
raise ValueError(f"Double free! {block} is already freed.")
block.ref_count -= 1
if block.ref_count == 0:
self.free_blocks.append(block)
def get_num_free_blocks(self) -> int:
return len(self.free_blocks)
def get_num_total_blocks(self) -> int:
return self.num_blocks
def contains_block(self, block_hash: int) -> bool:
raise NotImplementedError(
"Invalid codepath for uncached block allocator.")
def update_hash(self, block_hash: int, block: PhysicalTokenBlock):
raise NotImplementedError(
"Invalid codepath for uncached block allocator.")
class BlockSpaceManagerV1(BlockSpaceManager):
"""Manages the mapping between logical and physical token blocks."""
def __init__(
self,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
watermark: float = 0.01,
sliding_window: Optional[int] = None,
enable_caching: bool = False,
) -> None:
self.block_size = block_size
self.num_total_gpu_blocks = num_gpu_blocks
self.num_total_cpu_blocks = num_cpu_blocks
if enable_caching and sliding_window is not None:
raise NotImplementedError(
"Sliding window is not allowed with prefix caching enabled!")
self.block_sliding_window = None
if sliding_window is not None:
# Round up to nearest block size to regularize sliding window
# allocation sizes.
self.block_sliding_window = math.ceil(sliding_window / block_size)
self.watermark = watermark
assert watermark >= 0.0
self.enable_caching = enable_caching
self.watermark_blocks = int(watermark * num_gpu_blocks)
if self.enable_caching:
logger.info("Automatic prefix caching is enabled.")
self.gpu_allocator: BlockAllocatorBase = CachedBlockAllocator(
Device.GPU, block_size, num_gpu_blocks)
self.cpu_allocator: BlockAllocatorBase = CachedBlockAllocator(
Device.CPU, block_size, num_cpu_blocks)
else:
self.gpu_allocator = UncachedBlockAllocator(
Device.GPU, block_size, num_gpu_blocks)
self.cpu_allocator = UncachedBlockAllocator(
Device.CPU, block_size, num_cpu_blocks)
# Mapping: seq_id -> BlockTable.
self.block_tables: Dict[int, BlockTable] = {}
def can_allocate(self, seq_group: SequenceGroup) -> AllocStatus:
# FIXME(woosuk): Here we assume that all sequences in the group share
# the same prompt. This may not be true for preempted sequences.
seq = seq_group.get_seqs(status=SequenceStatus.WAITING)[0]
num_required_blocks = len(seq.logical_token_blocks)
if self.block_sliding_window is not None:
num_required_blocks = min(num_required_blocks,
self.block_sliding_window)
num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
# Use watermark to avoid frequent cache eviction.
if (self.num_total_gpu_blocks - num_required_blocks <
self.watermark_blocks):
return AllocStatus.NEVER
if num_free_gpu_blocks - num_required_blocks >= self.watermark_blocks:
return AllocStatus.OK
else:
return AllocStatus.LATER
def allocate(self, seq_group: SequenceGroup) -> None:
# NOTE: Here we assume that all sequences in the group have the same
# prompt.
seq = seq_group.get_seqs(status=SequenceStatus.WAITING)[0]
# Allocate new physical token blocks that will store the prompt tokens.
num_prompt_blocks = len(seq.logical_token_blocks)
block_table: BlockTable = []
for logical_idx in range(num_prompt_blocks):
if (self.block_sliding_window is not None
and logical_idx >= self.block_sliding_window):
block = block_table[logical_idx % self.block_sliding_window]
# Set the reference counts of the token blocks.
block.ref_count = seq_group.num_seqs()
elif self.enable_caching:
block = self.gpu_allocator.allocate(
seq.hash_of_block(logical_idx),
seq.num_hashed_tokens_of_block(logical_idx))
else:
block = self.gpu_allocator.allocate()
# Set the reference counts of the token blocks.
block.ref_count = seq_group.num_seqs()
block_table.append(block)
# Assign the block table for each sequence.
for seq in seq_group.get_seqs(status=SequenceStatus.WAITING):
self.block_tables[seq.seq_id] = block_table.copy()
def can_append_slots(self,
seq_group: SequenceGroup,
num_lookahead_slots: int = 0) -> bool:
assert (num_lookahead_slots == 0
), "lookahead allocation not supported in BlockSpaceManagerV1"
# Simple heuristic: If there is at least one free block
# for each sequence, we can append.
num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
num_seqs = seq_group.num_seqs(status=SequenceStatus.RUNNING)
return num_seqs <= num_free_gpu_blocks
def _promote_last_block(
self,
seq: Sequence,
last_block: PhysicalTokenBlock,
) -> PhysicalTokenBlock:
assert self.enable_caching
# Compute a new hash for the block so that it can be shared by other
# Sequences
new_hash = seq.hash_of_block(len(seq.logical_token_blocks) - 1)
# if new_hash is already in the cached table, then free last_block
# and return the cached version
if self.gpu_allocator.contains_block(new_hash):
self.gpu_allocator.free(last_block)
return self.gpu_allocator.allocate(new_hash)
else:
self.gpu_allocator.update_hash(new_hash, last_block)
return last_block
def _is_last_block_full(
self,
seq: Sequence,
) -> bool:
token_ids_len = seq.data.get_len()
return token_ids_len > 0 and token_ids_len % seq.block_size == 0
def _maybe_promote_last_block(
self,
seq: Sequence,
last_block: PhysicalTokenBlock,
) -> PhysicalTokenBlock:
if self._is_last_block_full(seq):
return self._promote_last_block(seq, last_block)
else:
return last_block
def _allocate_last_physical_block(
self,
seq: Sequence,
) -> PhysicalTokenBlock:
# Called before a new block is appended.
# This is in charge of allocating a new physical block (to be appended).
# None if the last block is not full. Otherwise, we set it to the
# content hash.
if not self.enable_caching:
return self.gpu_allocator.allocate()
block_hash: Optional[int] = None
if (self._is_last_block_full(seq)):
block_hash = seq.hash_of_block(len(seq.logical_token_blocks) - 1)
num_hashed_tokens = seq.num_hashed_tokens_of_block(
len(seq.logical_token_blocks) - 1)
# num_hashed_tokens is used to compute future hashes
# (e.g. in the hashing function, it is used to ask the sequence for
# prefix tokens)
new_block = self.gpu_allocator.allocate(block_hash, num_hashed_tokens)
# If the block has is None, then the block is not full.
# If the block is not full, then we expect it to have a refcount of 1.
if block_hash is None:
assert new_block.ref_count == 1
return new_block
def append_slots(
self,
seq: Sequence,
num_lookahead_slots: int = 0,
) -> List[Tuple[int, int]]:
"""Allocate a physical slot for a new token."""
logical_blocks = seq.logical_token_blocks
block_table = self.block_tables[seq.seq_id]
# If we need to allocate a new physical block
if len(block_table) < len(logical_blocks):
# Currently this code only supports adding one physical block
assert len(block_table) == len(logical_blocks) - 1
if (self.block_sliding_window
and len(block_table) >= self.block_sliding_window):
# reuse a block
block_table.append(block_table[len(block_table) %
self.block_sliding_window])
else:
# The sequence hash a new logical block.
# Allocate a new physical block.
new_block = self._allocate_last_physical_block(seq)
block_table.append(new_block)
return []
# We want to append the token to the last physical block.
last_block = block_table[-1]
assert last_block.device == Device.GPU
if last_block.ref_count == 1:
# Not shared with other sequences. Appendable.
if self.enable_caching:
# If the last block is now complete, we may reuse an old block
# to save memory.
maybe_new_block = self._maybe_promote_last_block(
seq, last_block)
block_table[-1] = maybe_new_block
return []
else:
# The last block is shared with other sequences.
# Copy on Write: Allocate a new block and copy the tokens.
new_block = self._allocate_last_physical_block(seq)
block_table[-1] = new_block
self.gpu_allocator.free(last_block)
return [(last_block.block_number, new_block.block_number)]
def fork(self, parent_seq: Sequence, child_seq: Sequence) -> None:
# NOTE: fork does not allocate a new physical block.
# Thus, it is always safe from OOM.
src_block_table = self.block_tables[parent_seq.seq_id]
self.block_tables[child_seq.seq_id] = src_block_table.copy()
# When using a sliding window, blocks will be eventually reused.
# In this case the block tables will contain repeated blocks.
# When forking, we must make sure that each block's `ref_count`
# is only incremented by one, so we deduplicate them by wrapping
# them in a set.
for block in set(src_block_table):
block.ref_count += 1
def _get_physical_blocks(
self, seq_group: SequenceGroup) -> List[PhysicalTokenBlock]:
# NOTE: Here, we assume that the physical blocks are only shared by
# the sequences in the same group.
blocks: Set[PhysicalTokenBlock] = set()
for seq in seq_group.get_seqs():
if seq.is_finished():
continue
blocks.update(self.block_tables[seq.seq_id])
return list(blocks)
def can_swap_in(self,
seq_group: SequenceGroup,
num_lookahead_slots: int = 0) -> AllocStatus:
assert (num_lookahead_slots == 0
), "BlockSpaceManagerV1 does not support lookahead allocation"
blocks = self._get_physical_blocks(seq_group)
num_swapped_seqs = seq_group.num_seqs(status=SequenceStatus.SWAPPED)
num_free_blocks = self.gpu_allocator.get_num_free_blocks()
# NOTE: Conservatively, we assume that every sequence will allocate
# at least one free block right after the swap-in.
# NOTE: This should match the logic in can_append_slot().
num_required_blocks = len(blocks) + num_swapped_seqs
if self.gpu_allocator.get_num_total_blocks() < num_required_blocks:
return AllocStatus.NEVER
elif num_free_blocks - num_required_blocks >= self.watermark_blocks:
return AllocStatus.OK
else:
return AllocStatus.LATER
def swap_in(self,
seq_group: SequenceGroup,
num_lookahead_slots: int = 0) -> Dict[int, int]:
assert (num_lookahead_slots == 0
), "BlockSpaceManagerV1 does not support lookahead allocation"
# CPU block -> GPU block.
mapping: Dict[PhysicalTokenBlock, PhysicalTokenBlock] = {}
for seq in seq_group.get_seqs(status=SequenceStatus.SWAPPED):
new_block_table: BlockTable = []
block_table = self.block_tables[seq.seq_id]
for cpu_block in block_table:
if cpu_block in mapping:
gpu_block = mapping[cpu_block]
gpu_block.ref_count += 1
else:
gpu_block = self.gpu_allocator.allocate(
cpu_block.block_hash, cpu_block.num_hashed_tokens)
mapping[cpu_block] = gpu_block
new_block_table.append(gpu_block)
# Free the CPU block swapped in to GPU.
self.cpu_allocator.free(cpu_block)
self.block_tables[seq.seq_id] = new_block_table
block_number_mapping = {
cpu_block.block_number: gpu_block.block_number
for cpu_block, gpu_block in mapping.items()
}
return block_number_mapping
def can_swap_out(self, seq_group: SequenceGroup) -> bool:
blocks = self._get_physical_blocks(seq_group)
return len(blocks) <= self.cpu_allocator.get_num_free_blocks()
def swap_out(self, seq_group: SequenceGroup) -> Dict[int, int]:
# GPU block -> CPU block.
mapping: Dict[PhysicalTokenBlock, PhysicalTokenBlock] = {}
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
new_block_table: BlockTable = []
block_table = self.block_tables[seq.seq_id]
for gpu_block in block_table:
if gpu_block in mapping:
cpu_block = mapping[gpu_block]
cpu_block.ref_count += 1
else:
cpu_block = self.cpu_allocator.allocate(
gpu_block.block_hash, gpu_block.num_hashed_tokens)
mapping[gpu_block] = cpu_block
new_block_table.append(cpu_block)
# Free the GPU block swapped out to CPU.
self.gpu_allocator.free(gpu_block)
self.block_tables[seq.seq_id] = new_block_table
block_number_mapping = {
gpu_block.block_number: cpu_block.block_number
for gpu_block, cpu_block in mapping.items()
}
return block_number_mapping
def _free_block_table(self, block_table: BlockTable) -> None:
# when using a sliding window, each seq will only use up
# to `self.block_sliding_window` blocks. When freeing
# the block table, we must make sure to not free blocks more
# than once. If no sliding window is used, there is no block
# reuse in the block table, so we must free all blocks.
blocks_to_free = (block_table[-self.block_sliding_window:]
if self.block_sliding_window is not None else
block_table)
for block in set(blocks_to_free):
if block.device == Device.GPU:
self.gpu_allocator.free(block)
else:
self.cpu_allocator.free(block)
def free(self, seq: Sequence) -> None:
if seq.seq_id not in self.block_tables:
# Already freed or haven't been scheduled yet.
return
block_table = self.block_tables[seq.seq_id]
self._free_block_table(block_table)
del self.block_tables[seq.seq_id]
def reset(self) -> None:
for block_table in self.block_tables.values():
self._free_block_table(block_table)
self.block_tables.clear()
def get_block_table(self, seq: Sequence) -> List[int]:
block_table = self.block_tables[seq.seq_id]
return [block.block_number for block in block_table]
def get_num_free_gpu_blocks(self) -> int:
return self.gpu_allocator.get_num_free_blocks()
def get_num_free_cpu_blocks(self) -> int:
return self.cpu_allocator.get_num_free_blocks()
def access_all_blocks_in_seq(
self,
seq: Sequence,
access_time: float,
) -> None:
if self.enable_caching:
# Update the last accessed time of all the blocks accessed
# in this step.
block_table = self.block_tables[seq.seq_id]
for block in block_table:
block.last_accessed = access_time
def compute_full_blocks_in_seq(self, seq: Sequence):
if seq.seq_id not in self.block_tables:
return
max_full_block = seq.get_len() // self.block_size - 1
block_table = self.block_tables[seq.seq_id]
if max_full_block == -1:
return
for i in reversed(range(max_full_block)):
if block_table[i].computed:
break
block_table[i].computed = True
def get_all_computed_blocks(self, seq: Sequence) -> List[int]:
if seq.seq_id not in self.block_tables:
return []
block_table = self.block_tables[seq.seq_id]
# NOTE We exclude the last block to avoid the case where the entire
# prompt is cached. This would cause erroneous behavior in model
# runner.
return [
b.block_number
for b in takewhile(lambda b: b.computed, block_table[:-1])
]
def get_common_computed_block_ids(
self, seqs: List[Sequence]) -> GenericSequence[int]:
"""Return the block ids that are common for a given sequence group.
Used in prefill (can skip prefill of some blocks).
"""
# Can return non-empty result only with prefix caching enabled.
if not self.enable_caching:
return []
ids_list = [self.get_all_computed_blocks(seq) for seq in seqs]
return commonprefix([ids for ids in ids_list if ids != []])
def mark_blocks_as_computed(self, seq_group: SequenceGroup):
if self.enable_caching:
for seq in seq_group.seqs_dict.values():
self.compute_full_blocks_in_seq(seq)