2024-08-29 19:19:08 -07:00

446 lines
17 KiB
Python

# Adapted from https://github.com/fixie-ai/ultravox/blob/ecd58c4041030bae2ad15aa6bcf04ab43199ea02/ultravox/model/ultravox_model.py
"""PyTorch Ultravox model."""
import itertools
import math
from array import array
from functools import lru_cache
from typing import (Iterable, List, Literal, Mapping, Optional, Tuple,
TypedDict, Union, cast)
import librosa
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import functional as F
from transformers.models.whisper import WhisperFeatureExtractor
from transformers.models.whisper.modeling_whisper import WhisperEncoder
from vllm.attention import AttentionMetadata
from vllm.config import CacheConfig, MultiModalConfig
from vllm.inputs import INPUT_REGISTRY
from vllm.inputs.data import LLMInputs
from vllm.inputs.registry import InputContext
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul, get_act_fn
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.interfaces import SupportsMultiModal
from vllm.model_executor.models.utils import (filter_weights,
init_vllm_registered_model,
merge_multimodal_embeddings)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.base import MultiModalInputs
from vllm.multimodal.utils import (cached_get_tokenizer,
repeat_and_pad_placeholder_tokens)
from vllm.sequence import VLLM_TOKEN_ID_ARRAY_TYPE, SequenceData
from vllm.transformers_utils.configs.ultravox import UltravoxConfig
_AUDIO_PLACEHOLDER_TOKEN = 128002
_AUDIO_TOKENS_PER_SECOND = 6.25
logger = init_logger(__name__)
class UltravoxAudioFeatureInputs(TypedDict):
type: Literal["audio_features"]
data: Union[torch.Tensor, List[torch.Tensor]]
"""Shape: `(batch_size * num_audios, 80, M)"""
class UltravoxAudioEmbeddingInputs(TypedDict):
type: Literal["audio_embeds"]
data: torch.Tensor
UltravoxAudioInputs = Union[UltravoxAudioFeatureInputs,
UltravoxAudioEmbeddingInputs]
@lru_cache
def cached_feature_extractor(model_id: str) -> WhisperFeatureExtractor:
return WhisperFeatureExtractor.from_pretrained(model_id)
def whisper_feature_extractor(ctx: InputContext) -> WhisperFeatureExtractor:
return cached_feature_extractor(
ctx.get_hf_config(UltravoxConfig).audio_model_id)
def get_ultravox_max_audio_tokens(ctx: InputContext):
feature_extractor = whisper_feature_extractor(ctx)
return math.ceil(feature_extractor.chunk_length * _AUDIO_TOKENS_PER_SECOND)
def dummy_data_for_ultravox(
ctx: InputContext,
seq_len: int,
mm_counts: Mapping[str, int],
):
feature_extractor = whisper_feature_extractor(ctx)
audio_count = mm_counts["audio"]
audio_token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE, [
_AUDIO_PLACEHOLDER_TOKEN
]) * get_ultravox_max_audio_tokens(ctx) * audio_count
other_token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE,
[0]) * (seq_len - len(audio_token_ids))
audio_and_sr = (np.array([0.0] * feature_extractor.chunk_length), 1)
mm_dict = {
"audio":
audio_and_sr if audio_count == 1 else [audio_and_sr] * audio_count
}
return (SequenceData(audio_token_ids + other_token_ids), mm_dict)
def input_mapper_for_ultravox(ctx: InputContext, data: object):
if isinstance(data, tuple):
(audio, sr) = cast(Tuple[np.ndarray, Union[float, int]], data)
feature_extractor = whisper_feature_extractor(ctx)
if sr != feature_extractor.sampling_rate:
audio = librosa.resample(audio,
orig_sr=sr,
target_sr=feature_extractor.sampling_rate)
sr = feature_extractor.sampling_rate
minimum_audio_length = feature_extractor.n_fft // 2 + 1
if len(audio) < minimum_audio_length:
# Not enough audio; pad it.
audio = np.pad(audio, (0, minimum_audio_length - len(audio)))
return MultiModalInputs({
"audio_features":
feature_extractor(audio,
sampling_rate=sr,
padding="longest",
return_tensors="pt")["input_features"]
})
raise NotImplementedError(f"Unsupported data type: {type(data)}")
def input_processor_for_ultravox(ctx: InputContext, llm_inputs: LLMInputs):
multi_modal_data = llm_inputs.get("multi_modal_data")
if multi_modal_data is None or "audio" not in multi_modal_data:
return llm_inputs
feature_extractor = whisper_feature_extractor(ctx)
audio_data, sample_rate = multi_modal_data["audio"]
audio_length = audio_data.shape[0]
if sample_rate != feature_extractor.sampling_rate:
# Account for resampling.
adjustment = feature_extractor.sampling_rate / sample_rate
audio_length = math.ceil(adjustment * audio_length)
feature_extractor_output_length = math.ceil(
(audio_length -
(feature_extractor.hop_length - 1)) / feature_extractor.hop_length)
uv_config = ctx.get_hf_config(UltravoxConfig)
audio_num_tokens = min(
max(
1,
math.ceil(feature_extractor_output_length /
(uv_config.stack_factor * 2))),
get_ultravox_max_audio_tokens(ctx))
tokenizer = cached_get_tokenizer(ctx.model_config.tokenizer)
new_prompt, new_token_ids = repeat_and_pad_placeholder_tokens(
tokenizer,
llm_inputs.get("prompt"),
llm_inputs["prompt_token_ids"],
placeholder_token_id=_AUDIO_PLACEHOLDER_TOKEN,
repeat_count=audio_num_tokens,
)
# NOTE: Create a defensive copy of the original inputs
return LLMInputs(prompt_token_ids=new_token_ids,
prompt=new_prompt,
multi_modal_data=multi_modal_data)
class StackAudioFrames(nn.Module):
"""
Stack the audio embedding frames to reduce the sequence length by a factor
of `stack_factor`.
"""
def __init__(self, stack_factor: int = 8):
super().__init__()
self.stack_factor = stack_factor
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
B, T, C = audio_embeds.shape
T_pad = (T + self.stack_factor -
1) // self.stack_factor * self.stack_factor
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T))
B, T, C = audio_embeds.shape
audio_embeds = audio_embeds.view(B, T // self.stack_factor,
C * self.stack_factor)
return audio_embeds
class FlippedSiluAndMul(SiluAndMul):
"""Ultravox is trained with SwiGLU with flipped halves."""
def forward(self, x: torch.Tensor):
a, b = x.chunk(2, dim=-1)
flipped = torch.cat((b, a), dim=-1)
return super().forward(flipped)
class UltravoxProjector(nn.Module):
def __init__(self, config: UltravoxConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self._pad_and_stack = StackAudioFrames(config.stack_factor)
dim = config.audio_config.hidden_size * config.stack_factor
self.ln_pre = RMSNorm(dim)
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
dim = self.hidden_dim
if config.projector_act == "swiglu":
self.act = FlippedSiluAndMul()
dim = dim // 2
else:
self.act = get_act_fn(config.projector_act)
self.linear_2 = nn.Linear(dim,
config.text_config.hidden_size,
bias=False)
self.ln_post = RMSNorm(config.text_config.hidden_size)
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
audio_features = self._pad_and_stack(audio_features)
audio_features = self.ln_pre(audio_features)
hidden_states = self.linear_1(audio_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.ln_post(hidden_states)
return hidden_states
class ModifiedWhisperEncoder(WhisperEncoder):
"""
Encoder portion of OpenAI's Whisper model.
This implementation is a slightly modified version of HF Transformers'
Whisper Encoder, with only a few fixes:
1. base_model_prefix updated to allow for doing `.from_pretrained`
directly on the encoder
2. allow less than 30 second of audio padding to be passed in:
- relaxed ValueError check for `input_features` length to be less
than or equal to `expected_seq_length` instead of strictly equal
- embed_pos is now sliced to match the length of `inputs_embeds`
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
See commentary: https://github.com/huggingface/transformers/issues/25744
"""
base_model_prefix = "model.encoder"
def forward(
self,
input_features,
):
expected_seq_length = (self.config.max_source_positions *
self.conv1.stride[0] * self.conv2.stride[0])
if input_features.shape[-1] > expected_seq_length:
raise ValueError(
f"Whisper expects the mel input features to be of length "
f"{expected_seq_length} or less, but found "
f"{input_features.shape[-1]}. Make sure to pad the input mel "
f"features to {expected_seq_length}.")
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight[:inputs_embeds.size(-2)]
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states,
p=self.dropout,
training=self.training)
for encoder_layer in self.layers:
layer_outputs = encoder_layer(
hidden_states,
None,
layer_head_mask=None,
)
hidden_states = layer_outputs[0]
hidden_states = self.layer_norm(hidden_states)
return hidden_states
@MULTIMODAL_REGISTRY.register_input_mapper("audio", input_mapper_for_ultravox)
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens(
"audio", get_ultravox_max_audio_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_ultravox)
@INPUT_REGISTRY.register_input_processor(input_processor_for_ultravox)
class UltravoxModel(nn.Module, SupportsMultiModal):
def __init__(self,
config: UltravoxConfig,
multimodal_config: MultiModalConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional["QuantizationConfig"] = None):
super().__init__()
self.config = config
self.multi_modal_config = multimodal_config
assert self.multi_modal_config
if config.audio_model_id is not None:
self.audio_tower = ModifiedWhisperEncoder.from_pretrained(
config.audio_model_id)
else:
self.audio_tower = ModifiedWhisperEncoder(config.audio_config)
self.multi_modal_projector = UltravoxProjector(config)
self.language_model = init_vllm_registered_model(
config.text_config, cache_config, quant_config)
def _audio_features_to_embeddings(
self, input_features: torch.Tensor) -> torch.Tensor:
audio_input = input_features.to(self.audio_tower.dtype)
audio_features = self.audio_tower(audio_input)
audio_features = audio_features.to(self.audio_tower.dtype)
audio_embeddings = self.multi_modal_projector(audio_features)
return audio_embeddings
def _parse_and_validate_audio_input(
self, **kwargs: object) -> Optional[UltravoxAudioInputs]:
audio_features = kwargs.pop("audio_features", None)
audio_embeds = kwargs.pop("audio_embeds", None)
if audio_features is None and audio_embeds is None:
return None
if audio_features is not None:
if not isinstance(audio_features, (torch.Tensor, list)):
raise ValueError("Incorrect type of audio features. "
f"Got type: {type(audio_features)}")
# Remove the N dimension until multiple audios are supported.
if isinstance(audio_features, torch.Tensor):
audio_features = audio_features.squeeze(1)
else:
audio_features = [t.squeeze(0) for t in audio_features]
return UltravoxAudioFeatureInputs(type="audio_features",
data=audio_features)
if audio_embeds is not None:
if not isinstance(audio_embeds, torch.Tensor):
raise ValueError("Incorrect type of audio embeds. "
f"Got type: {type(audio_embeds)}")
# Remove the N dimension until multiple audios are supported.
audio_embeds = audio_embeds.squeeze(1)
return UltravoxAudioEmbeddingInputs(type="audio_embeds",
data=audio_embeds)
raise AssertionError("This line should be unreachable.")
def _process_audio_input(
self, audio_input: UltravoxAudioInputs
) -> Union[torch.Tensor, List[torch.Tensor]]:
if audio_input["type"] == "audio_embeds":
return audio_input["data"]
audio_features = audio_input["data"]
if isinstance(audio_features, list):
# TODO: Batch these through the encoder/projector instead of
# serializing them.
return [
self._audio_features_to_embeddings(
features.unsqueeze(0)).squeeze(0)
for features in audio_features
]
else:
return self._audio_features_to_embeddings(audio_features)
def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[torch.Tensor],
**kwargs) -> SamplerOutput:
"""Run forward pass for Ultravox
One key thing to understand is the `input_ids` already accounts for the
positions of the to-be-inserted audio embeddings. The to-be-inserted
audio has a size that is essentially 6.25 tokens per second of audio.
This way, the `positions` and `attn_metadata` are consistent
with the `input_ids`.
Args:
input_features: A batch of audio inputs, [1, 80, M].
"""
audio_input = self._parse_and_validate_audio_input(**kwargs)
if audio_input is not None:
audio_embeddings = self._process_audio_input(audio_input)
inputs_embeds = self.language_model.model.get_input_embeddings(
input_ids)
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, audio_embeddings,
_AUDIO_PLACEHOLDER_TOKEN)
input_ids = None
else:
inputs_embeds = None
hidden_states = self.language_model.model(
input_ids=input_ids,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
return self.language_model.sample(logits, sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
# prepare weight iterators for components
projector_weights, llm_weights = itertools.tee(weights, 2)
# load projector weights
projector_weights = filter_weights(projector_weights,
"multi_modal_projector")
projector_params_dict = dict(
self.multi_modal_projector.named_parameters())
for name, loaded_weight in projector_weights:
param = projector_params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# load llm backbone
llm_weights = filter_weights(llm_weights, "language_model")
self.language_model.load_weights(llm_weights)