2024-08-29 19:19:08 -07:00

353 lines
14 KiB
Python

# coding=utf-8
# adapted from https://github.com/huggingface/transformers/blob/v4.39.3/src/transformers/models/fuyu/modeling_fuyu.py
# Copyright 2023 The vLLM team.
# Copyright 2023 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Fuyu model."""
import math
from array import array
from typing import Iterable, List, Literal, Mapping, Optional, Tuple, TypedDict
import torch
import torch.nn as nn
import torch.utils.checkpoint
from PIL import Image
from transformers import FuyuConfig, FuyuImageProcessor
from vllm.attention import AttentionMetadata
from vllm.config import CacheConfig, MultiModalConfig
from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import ColumnParallelLinear
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.persimmon import PersimmonForCausalLM
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.base import MultiModalInputs
from vllm.multimodal.image import cached_get_image_processor
from vllm.multimodal.utils import cached_get_tokenizer
from vllm.sequence import (VLLM_TOKEN_ID_ARRAY_TYPE, IntermediateTensors,
SequenceData)
from .interfaces import SupportsMultiModal
from .utils import merge_multimodal_embeddings
logger = init_logger(__name__)
# Cannot find the following 2 numbers from hf config.
_IMAGE_TOKEN_ID = 71011
_NEWLINE_TOKEN_ID = 71019
MAX_IMAGE_FEATURE_SIZE_HEIGHT = 1080
MAX_IMAGE_FEATURE_SIZE_WIDTH = 1920
class FuyuImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
data: torch.Tensor
"""
Shape:
(batch_size, num_patches, patch_size_x * patch_size_y * num_channels)
"""
def _calculate_num_image_tokens(
height: int,
width: int,
) -> Tuple[int, int]:
"""
calculate number of image tokens needed for a given image size
The expected Fuyu image prompts is in format:
(image_token * ncols + newline_token) * nrows
args:
image_size: Tuple[int, int] - (width, height) of the image
returns:
ncols: int - number of image tokens in x direction
nrows: int - number of image tokens in y direction
"""
ncol = math.ceil(width / 30)
nrow = math.ceil(height / 30)
return ncol, nrow
def get_max_fuyu_image_feature_size():
return _calculate_num_image_tokens(
height=MAX_IMAGE_FEATURE_SIZE_HEIGHT,
width=MAX_IMAGE_FEATURE_SIZE_WIDTH,
)
def get_max_fuyu_image_tokens(ctx: InputContext):
ncol, nrow = get_max_fuyu_image_feature_size()
return (ncol + 1) * nrow
def dummy_seq_data_for_fuyu(ctx: InputContext, seq_len: int, num_images: int):
ncol, nrow = get_max_fuyu_image_feature_size()
image_feature_size = get_max_fuyu_image_tokens(ctx)
image_token_ids = (
array(VLLM_TOKEN_ID_ARRAY_TYPE, [_IMAGE_TOKEN_ID]) * ncol +
array(VLLM_TOKEN_ID_ARRAY_TYPE, [_NEWLINE_TOKEN_ID])) * nrow
token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE, image_token_ids) * num_images
token_ids += array(VLLM_TOKEN_ID_ARRAY_TYPE,
[0]) * (seq_len - image_feature_size * num_images)
return SequenceData(token_ids)
def dummy_image_for_fuyu(
num_images: int,
*,
image_width: int,
image_height: int,
):
image = Image.new("RGB", (image_width, image_height), color=0)
return {"image": image if num_images == 1 else [image] * num_images}
def dummy_data_for_fuyu(ctx: InputContext, seq_len: int,
mm_counts: Mapping[str, int]):
num_images = mm_counts["image"]
seq_data = dummy_seq_data_for_fuyu(ctx, seq_len, num_images)
mm_data = dummy_image_for_fuyu(num_images,
image_width=MAX_IMAGE_FEATURE_SIZE_WIDTH,
image_height=MAX_IMAGE_FEATURE_SIZE_HEIGHT)
return seq_data, mm_data
def _fuyu_image_preprocess(image_processor: FuyuImageProcessor,
data: Image.Image):
image_encoding = image_processor.preprocess(data, return_tensors="pt")
batch_images = torch.stack([img[0] for img in image_encoding["images"]
]).unsqueeze(1)
image_unpadded_heights = torch.tensor(
image_encoding["image_unpadded_heights"])
image_unpadded_widths = torch.tensor(
image_encoding["image_unpadded_widths"])
batch_size = len(image_encoding["images"])
image_present = torch.ones(batch_size, 1, 1)
model_image_input = image_processor.preprocess_with_tokenizer_info(
image_input=batch_images,
image_present=image_present,
image_unpadded_h=image_unpadded_heights,
image_unpadded_w=image_unpadded_widths,
image_placeholder_id=_IMAGE_TOKEN_ID,
image_newline_id=_NEWLINE_TOKEN_ID,
variable_sized=True,
)
return model_image_input
def input_processor_for_fuyu(ctx: InputContext, llm_inputs: LLMInputs):
multi_modal_data = llm_inputs.get("multi_modal_data")
if multi_modal_data is None or "image" not in multi_modal_data:
return llm_inputs
model_config = ctx.model_config
image_data = multi_modal_data["image"]
new_multi_modal_data = {}
# process image data
if isinstance(image_data, Image.Image):
# Fuyu's image_processor can also finish token padding
image_processor: FuyuImageProcessor = cached_get_image_processor(
model_config.model)
model_image_input = _fuyu_image_preprocess(image_processor, image_data)
image_patches = torch.stack([
image_patch[0]
for image_patch in model_image_input["image_patches"]
])
new_multi_modal_data["image"] = image_patches
elif isinstance(image_data, torch.Tensor):
raise NotImplementedError("Embeddings input is not supported yet")
else:
raise TypeError(f"Invalid image type: {type(image_data)}")
# process prompts
prompt = llm_inputs.get("prompt")
prompt_token_ids = llm_inputs["prompt_token_ids"]
tokenizer = cached_get_tokenizer(model_config.model)
# dim0 is batch_size, dim1 is subseq_size which will always be 1
image_input_ids: List[List[
torch.Tensor]] = model_image_input["image_input_ids"]
image_input_ids = image_input_ids[0][0].tolist()
bos_token = tokenizer.encode("<s>", add_special_tokens=False)[1:]
boa_token = tokenizer.encode("\x04", add_special_tokens=False)[1:]
new_prompt = prompt + "\x04"
new_prompt_token_ids = image_input_ids + bos_token + prompt_token_ids[
1:] + boa_token
return LLMInputs(prompt=new_prompt,
prompt_token_ids=new_prompt_token_ids,
multi_modal_data=new_multi_modal_data)
def input_mapper_for_fuyu(ctx: InputContext, data: object):
model_config = ctx.model_config
if isinstance(data, Image.Image):
# Fuyu's image_processor can also finish token padding
image_processor: FuyuImageProcessor = cached_get_image_processor(
model_config.model)
model_image_input = _fuyu_image_preprocess(image_processor, data)
data = torch.stack([
image_patch[0]
for image_patch in model_image_input["image_patches"]
])
# image has been processed with prompt in input processor
return MultiModalInputs({"image_patches": data})
@MULTIMODAL_REGISTRY.register_image_input_mapper(input_mapper_for_fuyu)
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_fuyu_image_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_fuyu)
@INPUT_REGISTRY.register_input_processor(input_processor_for_fuyu)
class FuyuForCausalLM(nn.Module, SupportsMultiModal):
def __init__(self,
config: FuyuConfig,
multimodal_config: MultiModalConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.config = config
self.multimodal_config = multimodal_config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.image_token_id = _IMAGE_TOKEN_ID
self.image_feature_size = config.patch_size**2 * config.num_channels
self.vision_embed_tokens = ColumnParallelLinear(
self.image_feature_size,
config.hidden_size,
quant_config=quant_config,
)
self.language_model = PersimmonForCausalLM(config,
cache_config=cache_config,
quant_config=quant_config)
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[FuyuImagePixelInputs]:
image_patches = kwargs.pop("image_patches", None)
if isinstance(image_patches, torch.Tensor):
# Remove the N dimension until multiple images are supported.
image_patches = image_patches.squeeze(1)
expected_feature_size = self.image_feature_size
if image_patches.size(-1) != expected_feature_size:
raise ValueError(
f"Expected image patches to have the last dimension of "
f"{expected_feature_size}, got {image_patches.size(-1)}")
image_patches = image_patches.to(
self.vision_embed_tokens.weight.dtype)
return FuyuImagePixelInputs(type="pixel_values",
data=image_patches)
return None
def _process_image_input(
self, image_input: FuyuImagePixelInputs) -> torch.Tensor:
assert self.vision_embed_tokens is not None
vision_embeddings, _ = self.vision_embed_tokens(image_input["data"])
return vision_embeddings
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs: object,
):
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is not None:
vision_embeddings = self._process_image_input(image_input)
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, vision_embeddings,
self.image_token_id)
else:
inputs_embeds = None
hidden_states = self.language_model(
input_ids=input_ids,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.language_model.logits_processor(
self.language_model.lm_head, hidden_states, sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.language_model.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
param = params_dict[name]
if "query_key_value" in name:
# copy from vllm/model_executor/models/bloom.py
# NOTE: Fuyu's fused QKV's output_dim has the shape of
# (num_heads * 3 * head_size), while the
# required shape is (3 * num_heads * head_size).
# Thus, we need weight conversion.
output_dim = getattr(param, "output_dim", None)
num_heads = self.config.num_attention_heads
if output_dim is not None:
loaded_weight_shape = loaded_weight.shape
loaded_weight = loaded_weight.view(
loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
loaded_weight_shape[output_dim + 1:])
loaded_weight = loaded_weight.transpose(
output_dim, output_dim + 1)
loaded_weight = loaded_weight.reshape(loaded_weight_shape)
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)