
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
144 lines
4.0 KiB
Python
144 lines
4.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import dataclasses
|
|
from typing import Dict, List, Optional
|
|
|
|
import pytest
|
|
|
|
from vllm.config import CompilationLevel
|
|
from vllm.utils import cuda_device_count_stateless
|
|
|
|
from ..utils import compare_all_settings
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class TestSetting:
|
|
model: str
|
|
model_args: List[str]
|
|
pp_size: int
|
|
tp_size: int
|
|
attn_backend: str
|
|
method: str
|
|
fullgraph: bool
|
|
|
|
|
|
# representative settings for testing
|
|
test_settings = [
|
|
# basic llama model
|
|
TestSetting(
|
|
model="meta-llama/Llama-3.2-1B",
|
|
model_args=[],
|
|
pp_size=2,
|
|
tp_size=2,
|
|
attn_backend="FLASHINFER",
|
|
method="generate",
|
|
fullgraph=True,
|
|
),
|
|
# llama model with quantization
|
|
TestSetting(
|
|
model="TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ",
|
|
model_args=["--quantization", "gptq"],
|
|
pp_size=1,
|
|
tp_size=1,
|
|
attn_backend="FLASH_ATTN",
|
|
method="generate",
|
|
fullgraph=True,
|
|
),
|
|
# MoE model
|
|
TestSetting(
|
|
model="ibm/PowerMoE-3b",
|
|
model_args=[],
|
|
pp_size=1,
|
|
tp_size=2,
|
|
attn_backend="FLASH_ATTN",
|
|
method="generate",
|
|
fullgraph=True,
|
|
),
|
|
# embedding model
|
|
TestSetting(
|
|
model="BAAI/bge-multilingual-gemma2",
|
|
model_args=["--task", "embed"],
|
|
pp_size=1,
|
|
tp_size=1,
|
|
attn_backend="FLASH_ATTN",
|
|
method="encode",
|
|
fullgraph=True,
|
|
),
|
|
# encoder-based embedding model (BERT)
|
|
TestSetting(
|
|
model="BAAI/bge-base-en-v1.5",
|
|
model_args=["--task", "embed"],
|
|
pp_size=1,
|
|
tp_size=1,
|
|
attn_backend="XFORMERS",
|
|
method="encode",
|
|
fullgraph=True,
|
|
),
|
|
# vision language model
|
|
TestSetting(
|
|
model="microsoft/Phi-3.5-vision-instruct",
|
|
model_args=["--trust-remote-code", "--max-model-len", "2048"],
|
|
pp_size=2,
|
|
tp_size=1,
|
|
attn_backend="FLASH_ATTN",
|
|
method="generate_with_image",
|
|
fullgraph=False,
|
|
),
|
|
]
|
|
|
|
|
|
# we cannot afford testing the full Catesian product
|
|
# of all models and all levels
|
|
@pytest.mark.parametrize("test_setting", test_settings)
|
|
def test_compile_correctness(test_setting: TestSetting):
|
|
# this test is run under multiple suits, with different GPUs.
|
|
# make sure we only run the test with correct CUDA devices.
|
|
# don't use "<", as it will duplicate the tests.
|
|
model = test_setting.model
|
|
model_args = test_setting.model_args
|
|
pp_size = test_setting.pp_size
|
|
tp_size = test_setting.tp_size
|
|
attn_backend = test_setting.attn_backend
|
|
method = test_setting.method
|
|
fullgraph = test_setting.fullgraph
|
|
if cuda_device_count_stateless() != pp_size * tp_size:
|
|
pytest.skip("Not correct CUDA devices for the test.")
|
|
import os
|
|
os.environ["VLLM_ATTENTION_BACKEND"] = attn_backend
|
|
final_args = ["--enforce-eager"] + model_args + ["-pp", str(pp_size)] + \
|
|
["-tp", str(tp_size)]
|
|
|
|
all_args: List[List[str]] = []
|
|
all_envs: List[Optional[Dict[str, str]]] = []
|
|
|
|
for level in [
|
|
CompilationLevel.NO_COMPILATION,
|
|
CompilationLevel.PIECEWISE,
|
|
]:
|
|
all_args.append(final_args + [f"-O{level}"])
|
|
all_envs.append({})
|
|
|
|
# inductor will change the output, so we only compare if the output
|
|
# is close, not exactly the same.
|
|
compare_all_settings(
|
|
model,
|
|
all_args,
|
|
all_envs,
|
|
method=method if method != "generate" else "generate_close")
|
|
all_envs.clear()
|
|
all_args.clear()
|
|
|
|
for level in [
|
|
CompilationLevel.NO_COMPILATION,
|
|
CompilationLevel.DYNAMO_AS_IS,
|
|
CompilationLevel.DYNAMO_ONCE,
|
|
]:
|
|
all_args.append(final_args + [f"-O{level}"])
|
|
all_envs.append({})
|
|
if level != CompilationLevel.DYNAMO_ONCE and not fullgraph:
|
|
# "DYNAMO_ONCE" will always use fullgraph
|
|
all_envs[-1][
|
|
"VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE"] = "0" # type: ignore
|
|
|
|
compare_all_settings(model, all_args * 3, all_envs, method=method)
|