vllm/csrc/attention/attention_kernels.cuh
Aleksandr Malyshev 812c981fa0
Splitting attention kernel file (#10091)
Signed-off-by: maleksan85 <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
2024-11-11 22:55:07 -08:00

677 lines
28 KiB
Plaintext

/*
* Adapted from
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
* Copyright (c) 2023, The vLLM team.
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <algorithm>
#include "attention_dtypes.h"
#include "attention_utils.cuh"
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
#include "../quantization/fp8/amd/quant_utils.cuh"
typedef __hip_bfloat16 __nv_bfloat16;
#else
#include "../quantization/fp8/nvidia/quant_utils.cuh"
#endif
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
namespace vllm {
// Utility function for attention softmax.
template <int NUM_WARPS>
inline __device__ float block_sum(float* red_smem, float sum) {
// Decompose the thread index into warp / lane.
int warp = threadIdx.x / WARP_SIZE;
int lane = threadIdx.x % WARP_SIZE;
// Compute the sum per warp.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
sum += VLLM_SHFL_XOR_SYNC(sum, mask);
}
// Warp leaders store the data to shared memory.
if (lane == 0) {
red_smem[warp] = sum;
}
// Make sure the data is in shared memory.
__syncthreads();
// The warps compute the final sums.
if (lane < NUM_WARPS) {
sum = red_smem[lane];
}
// Parallel reduction inside the warp.
#pragma unroll
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
sum += VLLM_SHFL_XOR_SYNC(sum, mask);
}
// Broadcast to other threads.
return VLLM_SHFL_SYNC(sum, 0);
}
// TODO(woosuk): Merge the last two dimensions of the grid.
// Grid: (num_heads, num_seqs, max_num_partitions).
template <typename scalar_t, typename cache_t, int HEAD_SIZE, int BLOCK_SIZE,
int NUM_THREADS, vllm::Fp8KVCacheDataType KV_DTYPE,
bool IS_BLOCK_SPARSE,
int PARTITION_SIZE = 0> // Zero means no partitioning.
__device__ void paged_attention_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads,
// max_num_partitions]
scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions,
// head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads,
// head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads,
// head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const float k_scale, const float v_scale, const int tp_rank,
const int blocksparse_local_blocks, const int blocksparse_vert_stride,
const int blocksparse_block_size, const int blocksparse_head_sliding_step) {
const int seq_idx = blockIdx.y;
const int partition_idx = blockIdx.z;
const int max_num_partitions = gridDim.z;
constexpr bool USE_PARTITIONING = PARTITION_SIZE > 0;
const int seq_len = seq_lens[seq_idx];
if (USE_PARTITIONING && partition_idx * PARTITION_SIZE >= seq_len) {
// No work to do. Terminate the thread block.
return;
}
const int num_seq_blocks = DIVIDE_ROUND_UP(seq_len, BLOCK_SIZE);
const int num_blocks_per_partition =
USE_PARTITIONING ? PARTITION_SIZE / BLOCK_SIZE : num_seq_blocks;
// [start_block_idx, end_block_idx) is the range of blocks to process.
const int start_block_idx =
USE_PARTITIONING ? partition_idx * num_blocks_per_partition : 0;
const int end_block_idx =
MIN(start_block_idx + num_blocks_per_partition, num_seq_blocks);
const int num_blocks = end_block_idx - start_block_idx;
// [start_token_idx, end_token_idx) is the range of tokens to process.
const int start_token_idx = start_block_idx * BLOCK_SIZE;
const int end_token_idx =
MIN(start_token_idx + num_blocks * BLOCK_SIZE, seq_len);
const int num_tokens = end_token_idx - start_token_idx;
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
constexpr int NUM_THREAD_GROUPS =
NUM_THREADS / THREAD_GROUP_SIZE; // Note: This assumes THREAD_GROUP_SIZE
// divides NUM_THREADS
assert(NUM_THREADS % THREAD_GROUP_SIZE == 0);
constexpr int NUM_TOKENS_PER_THREAD_GROUP =
DIVIDE_ROUND_UP(BLOCK_SIZE, WARP_SIZE);
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
const int thread_idx = threadIdx.x;
const int warp_idx = thread_idx / WARP_SIZE;
const int lane = thread_idx % WARP_SIZE;
const int head_idx = blockIdx.x;
const int num_heads = gridDim.x;
const int num_queries_per_kv = num_heads / num_kv_heads;
const int kv_head_idx = head_idx / num_queries_per_kv;
const float alibi_slope =
alibi_slopes == nullptr ? 0.f : alibi_slopes[head_idx];
// A vector type to store a part of a key or a query.
// The vector size is configured in such a way that the threads in a thread
// group fetch or compute 16 bytes at a time. For example, if the size of a
// thread group is 4 and the data type is half, then the vector size is 16 /
// (4 * sizeof(half)) == 2.
constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
using Quant_vec = typename Vec<cache_t, VEC_SIZE>::Type;
constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;
// Load the query to registers.
// Each thread in a thread group has a different part of the query.
// For example, if the the thread group size is 4, then the first thread in
// the group has 0, 4, 8, ... th vectors of the query, and the second thread
// has 1, 5, 9, ... th vectors of the query, and so on. NOTE(woosuk): Because
// q is split from a qkv tensor, it may not be contiguous.
const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
__shared__ Q_vec q_vecs[THREAD_GROUP_SIZE][NUM_VECS_PER_THREAD];
#pragma unroll
for (int i = thread_group_idx; i < NUM_VECS_PER_THREAD;
i += NUM_THREAD_GROUPS) {
const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
q_vecs[thread_group_offset][i] =
*reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
}
__syncthreads(); // TODO(naed90): possible speedup if this is replaced with a
// memory wall right before we use q_vecs
// Memory planning.
extern __shared__ char shared_mem[];
// NOTE(woosuk): We use FP32 for the softmax logits for better accuracy.
float* logits = reinterpret_cast<float*>(shared_mem);
// Workspace for reduction.
__shared__ float red_smem[2 * NUM_WARPS];
// x == THREAD_GROUP_SIZE * VEC_SIZE
// Each thread group fetches x elements from the key at a time.
constexpr int x = 16 / sizeof(cache_t);
float qk_max = -FLT_MAX;
// Iterate over the key blocks.
// Each warp fetches a block of keys for each iteration.
// Each thread group in a warp fetches a key from the block, and computes
// dot product with the query.
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
// blocksparse specific vars
int bs_block_offset;
int q_bs_block_id;
if constexpr (IS_BLOCK_SPARSE) {
// const int num_blocksparse_blocks = DIVIDE_ROUND_UP(seq_len,
// blocksparse_block_size);
q_bs_block_id = (seq_len - 1) / blocksparse_block_size;
if (blocksparse_head_sliding_step >= 0)
// sliding on q heads
bs_block_offset =
(tp_rank * num_heads + head_idx) * blocksparse_head_sliding_step + 1;
else
// sliding on kv heads
bs_block_offset = (tp_rank * num_kv_heads + kv_head_idx) *
(-blocksparse_head_sliding_step) +
1;
}
for (int block_idx = start_block_idx + warp_idx; block_idx < end_block_idx;
block_idx += NUM_WARPS) {
// NOTE(woosuk): The block number is stored in int32. However, we cast it to
// int64 because int32 can lead to overflow when this variable is multiplied
// by large numbers (e.g., kv_block_stride).
// For blocksparse attention: skip computation on blocks that are not
// attended
if constexpr (IS_BLOCK_SPARSE) {
const int k_bs_block_id = block_idx * BLOCK_SIZE / blocksparse_block_size;
const bool is_remote =
((k_bs_block_id + bs_block_offset) % blocksparse_vert_stride == 0);
const bool is_local =
(k_bs_block_id > q_bs_block_id - blocksparse_local_blocks);
if (!is_remote && !is_local) {
for (int i = 0; i < NUM_TOKENS_PER_THREAD_GROUP; i++) {
const int physical_block_offset =
(thread_group_idx + i * WARP_SIZE) % BLOCK_SIZE;
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
if (thread_group_offset == 0) {
// NOTE(linxihui): assign very large number to skipped tokens to
// avoid contribution to the sumexp softmax normalizer. This will
// not be used at computing sum(softmax*v) as the blocks will be
// skipped.
logits[token_idx - start_token_idx] = -FLT_MAX;
}
}
continue;
}
}
const int64_t physical_block_number =
static_cast<int64_t>(block_table[block_idx]);
// Load a key to registers.
// Each thread in a thread group has a different part of the key.
// For example, if the the thread group size is 4, then the first thread in
// the group has 0, 4, 8, ... th vectors of the key, and the second thread
// has 1, 5, 9, ... th vectors of the key, and so on.
for (int i = 0; i < NUM_TOKENS_PER_THREAD_GROUP; i++) {
const int physical_block_offset =
(thread_group_idx + i * WARP_SIZE) % BLOCK_SIZE;
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
K_vec k_vecs[NUM_VECS_PER_THREAD];
#pragma unroll
for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
const cache_t* k_ptr =
k_cache + physical_block_number * kv_block_stride +
kv_head_idx * kv_head_stride + physical_block_offset * x;
const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
const int offset1 = (vec_idx * VEC_SIZE) / x;
const int offset2 = (vec_idx * VEC_SIZE) % x;
if constexpr (KV_DTYPE == Fp8KVCacheDataType::kAuto) {
k_vecs[j] = *reinterpret_cast<const K_vec*>(
k_ptr + offset1 * BLOCK_SIZE * x + offset2);
} else {
// Vector conversion from Quant_vec to K_vec.
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(
k_ptr + offset1 * BLOCK_SIZE * x + offset2);
k_vecs[j] = fp8::scaled_convert<K_vec, Quant_vec, KV_DTYPE>(
k_vec_quant, k_scale);
}
}
// Compute dot product.
// This includes a reduction across the threads in the same thread group.
float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(
q_vecs[thread_group_offset], k_vecs);
// Add the ALiBi bias if slopes are given.
qk += (alibi_slope != 0) ? alibi_slope * (token_idx - seq_len + 1) : 0;
if (thread_group_offset == 0) {
// Store the partial reductions to shared memory.
// NOTE(woosuk): It is required to zero out the masked logits.
const bool mask = token_idx >= seq_len;
logits[token_idx - start_token_idx] = mask ? 0.f : qk;
// Update the max value.
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
}
}
}
// Perform reduction across the threads in the same warp to get the
// max qk value for each "warp" (not across the thread block yet).
// The 0-th thread of each thread group already has its max qk value.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
qk_max = fmaxf(qk_max, VLLM_SHFL_XOR_SYNC(qk_max, mask));
}
if (lane == 0) {
red_smem[warp_idx] = qk_max;
}
__syncthreads();
// TODO(woosuk): Refactor this part.
// Get the max qk value for the sequence.
qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
qk_max = fmaxf(qk_max, VLLM_SHFL_XOR_SYNC(qk_max, mask));
}
// Broadcast the max qk value to all threads.
qk_max = VLLM_SHFL_SYNC(qk_max, 0);
// Get the sum of the exp values.
float exp_sum = 0.f;
for (int i = thread_idx; i < num_tokens; i += NUM_THREADS) {
float val = __expf(logits[i] - qk_max);
logits[i] = val;
exp_sum += val;
}
exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);
// Compute softmax.
const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
for (int i = thread_idx; i < num_tokens; i += NUM_THREADS) {
logits[i] *= inv_sum;
}
__syncthreads();
// If partitioning is enabled, store the max logit and exp_sum.
if (USE_PARTITIONING && thread_idx == 0) {
float* max_logits_ptr = max_logits +
seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions + partition_idx;
*max_logits_ptr = qk_max;
float* exp_sums_ptr = exp_sums + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions + partition_idx;
*exp_sums_ptr = exp_sum;
}
// Each thread will fetch 16 bytes from the value cache at a time.
constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
using L_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
using V_quant_vec = typename Vec<cache_t, V_VEC_SIZE>::Type;
using Float_L_vec = typename FloatVec<L_vec>::Type;
constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
constexpr int NUM_ROWS_PER_THREAD =
DIVIDE_ROUND_UP(HEAD_SIZE, NUM_ROWS_PER_ITER);
// NOTE(woosuk): We use FP32 for the accumulator for better accuracy.
float accs[NUM_ROWS_PER_THREAD];
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
accs[i] = 0.f;
}
scalar_t zero_value;
zero(zero_value);
for (int block_idx = start_block_idx + warp_idx; block_idx < end_block_idx;
block_idx += NUM_WARPS) {
// NOTE(woosuk): The block number is stored in int32. However, we cast it to
// int64 because int32 can lead to overflow when this variable is multiplied
// by large numbers (e.g., kv_block_stride).
// For blocksparse attention: skip computation on blocks that are not
// attended
if constexpr (IS_BLOCK_SPARSE) {
int v_bs_block_id = block_idx * BLOCK_SIZE / blocksparse_block_size;
if (!((v_bs_block_id + bs_block_offset) % blocksparse_vert_stride == 0) &&
!((v_bs_block_id > q_bs_block_id - blocksparse_local_blocks))) {
continue;
}
}
const int64_t physical_block_number =
static_cast<int64_t>(block_table[block_idx]);
const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
L_vec logits_vec;
from_float(logits_vec, *reinterpret_cast<Float_L_vec*>(logits + token_idx -
start_token_idx));
const cache_t* v_ptr = v_cache + physical_block_number * kv_block_stride +
kv_head_idx * kv_head_stride;
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE) {
const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
V_vec v_vec;
if constexpr (KV_DTYPE == Fp8KVCacheDataType::kAuto) {
v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
} else {
V_quant_vec v_quant_vec =
*reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
// Vector conversion from V_quant_vec to V_vec.
v_vec = fp8::scaled_convert<V_vec, V_quant_vec, KV_DTYPE>(v_quant_vec,
v_scale);
}
if (block_idx == num_seq_blocks - 1) {
// NOTE(woosuk): When v_vec contains the tokens that are out of the
// context, we should explicitly zero out the values since they may
// contain NaNs. See
// https://github.com/vllm-project/vllm/issues/641#issuecomment-1682544472
scalar_t* v_vec_ptr = reinterpret_cast<scalar_t*>(&v_vec);
#pragma unroll
for (int j = 0; j < V_VEC_SIZE; j++) {
v_vec_ptr[j] = token_idx + j < seq_len ? v_vec_ptr[j] : zero_value;
}
}
accs[i] += dot(logits_vec, v_vec);
}
}
}
// Perform reduction within each warp.
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
float acc = accs[i];
#pragma unroll
for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
acc += VLLM_SHFL_XOR_SYNC(acc, mask);
}
accs[i] = acc;
}
// NOTE(woosuk): A barrier is required because the shared memory space for
// logits is reused for the output.
__syncthreads();
// Perform reduction across warps.
float* out_smem = reinterpret_cast<float*>(shared_mem);
#pragma unroll
for (int i = NUM_WARPS; i > 1; i /= 2) {
int mid = i / 2;
// Upper warps write to shared memory.
if (warp_idx >= mid && warp_idx < i) {
float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
dst[row_idx] = accs[i];
}
}
}
__syncthreads();
// Lower warps update the output.
if (warp_idx < mid) {
const float* src = &out_smem[warp_idx * HEAD_SIZE];
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
accs[i] += src[row_idx];
}
}
}
__syncthreads();
}
// Write the final output.
if (warp_idx == 0) {
scalar_t* out_ptr =
out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
head_idx * max_num_partitions * HEAD_SIZE + partition_idx * HEAD_SIZE;
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
from_float(*(out_ptr + row_idx), accs[i]);
}
}
}
}
// Grid: (num_heads, num_seqs, 1).
template <typename scalar_t, typename cache_t, int HEAD_SIZE, int BLOCK_SIZE,
int NUM_THREADS, vllm::Fp8KVCacheDataType KV_DTYPE,
bool IS_BLOCK_SPARSE>
__global__ void paged_attention_v1_kernel(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads,
// head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads,
// head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const float k_scale, const float v_scale, const int tp_rank,
const int blocksparse_local_blocks, const int blocksparse_vert_stride,
const int blocksparse_block_size, const int blocksparse_head_sliding_step) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS,
KV_DTYPE, IS_BLOCK_SPARSE>(
/* exp_sums */ nullptr, /* max_logits */ nullptr, out, q, k_cache,
v_cache, num_kv_heads, scale, block_tables, seq_lens,
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride,
kv_head_stride, k_scale, v_scale, tp_rank, blocksparse_local_blocks,
blocksparse_vert_stride, blocksparse_block_size,
blocksparse_head_sliding_step);
}
// Grid: (num_heads, num_seqs, max_num_partitions).
template <typename scalar_t, typename cache_t, int HEAD_SIZE, int BLOCK_SIZE,
int NUM_THREADS, vllm::Fp8KVCacheDataType KV_DTYPE,
bool IS_BLOCK_SPARSE,
int PARTITION_SIZE>
__global__ void paged_attention_v2_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads,
// max_num_partitions]
scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads,
// max_num_partitions, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads,
// head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads,
// head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const float k_scale, const float v_scale, const int tp_rank,
const int blocksparse_local_blocks, const int blocksparse_vert_stride,
const int blocksparse_block_size, const int blocksparse_head_sliding_step) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS,
KV_DTYPE, IS_BLOCK_SPARSE, PARTITION_SIZE>(
exp_sums, max_logits, tmp_out, q, k_cache, v_cache, num_kv_heads, scale,
block_tables, seq_lens, max_num_blocks_per_seq, alibi_slopes, q_stride,
kv_block_stride, kv_head_stride, k_scale, v_scale, tp_rank,
blocksparse_local_blocks, blocksparse_vert_stride, blocksparse_block_size,
blocksparse_head_sliding_step);
}
// Grid: (num_heads, num_seqs).
template <typename scalar_t, int HEAD_SIZE, int NUM_THREADS,
int PARTITION_SIZE>
__global__ void paged_attention_v2_reduce_kernel(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const float* __restrict__ exp_sums, // [num_seqs, num_heads,
// max_num_partitions]
const float* __restrict__ max_logits, // [num_seqs, num_heads,
// max_num_partitions]
const scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads,
// max_num_partitions, head_size]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_partitions) {
const int num_heads = gridDim.x;
const int head_idx = blockIdx.x;
const int seq_idx = blockIdx.y;
const int seq_len = seq_lens[seq_idx];
const int num_partitions = DIVIDE_ROUND_UP(seq_len, PARTITION_SIZE);
if (num_partitions == 1) {
// No need to reduce. Only copy tmp_out to out.
scalar_t* out_ptr =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
const scalar_t* tmp_out_ptr =
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
head_idx * max_num_partitions * HEAD_SIZE;
for (int i = threadIdx.x; i < HEAD_SIZE; i += blockDim.x) {
out_ptr[i] = tmp_out_ptr[i];
}
// Terminate the thread block.
return;
}
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
const int warp_idx = threadIdx.x / WARP_SIZE;
const int lane = threadIdx.x % WARP_SIZE;
// Size: 2 * num_partitions.
extern __shared__ char shared_mem[];
// Workspace for reduction.
__shared__ float red_smem[2 * NUM_WARPS];
// Load max logits to shared memory.
float* shared_max_logits = reinterpret_cast<float*>(shared_mem);
const float* max_logits_ptr = max_logits +
seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions;
float max_logit = -FLT_MAX;
for (int i = threadIdx.x; i < num_partitions; i += blockDim.x) {
const float l = max_logits_ptr[i];
shared_max_logits[i] = l;
max_logit = fmaxf(max_logit, l);
}
__syncthreads();
// Get the global max logit.
// Reduce within the warp.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
max_logit = fmaxf(max_logit, VLLM_SHFL_XOR_SYNC(max_logit, mask));
}
if (lane == 0) {
red_smem[warp_idx] = max_logit;
}
__syncthreads();
// Reduce across warps.
max_logit = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
max_logit = fmaxf(max_logit, VLLM_SHFL_XOR_SYNC(max_logit, mask));
}
// Broadcast the max value to all threads.
max_logit = VLLM_SHFL_SYNC(max_logit, 0);
// Load rescaled exp sums to shared memory.
float* shared_exp_sums =
reinterpret_cast<float*>(shared_mem + sizeof(float) * num_partitions);
const float* exp_sums_ptr = exp_sums +
seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions;
float global_exp_sum = 0.0f;
for (int i = threadIdx.x; i < num_partitions; i += blockDim.x) {
float l = shared_max_logits[i];
float rescaled_exp_sum = exp_sums_ptr[i] * expf(l - max_logit);
global_exp_sum += rescaled_exp_sum;
shared_exp_sums[i] = rescaled_exp_sum;
}
__syncthreads();
global_exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], global_exp_sum);
const float inv_global_exp_sum = __fdividef(1.0f, global_exp_sum + 1e-6f);
// Aggregate tmp_out to out.
const scalar_t* tmp_out_ptr =
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
head_idx * max_num_partitions * HEAD_SIZE;
scalar_t* out_ptr =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
#pragma unroll
for (int i = threadIdx.x; i < HEAD_SIZE; i += NUM_THREADS) {
float acc = 0.0f;
for (int j = 0; j < num_partitions; ++j) {
acc += to_float(tmp_out_ptr[j * HEAD_SIZE + i]) * shared_exp_sums[j] *
inv_global_exp_sum;
}
from_float(out_ptr[i], acc);
}
}
} // namespace vllm
#undef WARP_SIZE
#undef MAX
#undef MIN
#undef DIVIDE_ROUND_UP