vllm/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py

136 lines
4.1 KiB
Python

import argparse
import json
import math
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
from tabulate import tabulate
def parse_arguments():
parser = argparse.ArgumentParser(
description=
'Parse command line arguments for summary-nightly-results script.')
parser.add_argument('--results-folder',
type=str,
required=True,
help='The folder where the results are stored.')
parser.add_argument('--description',
type=str,
required=True,
help='Description of the results.')
args = parser.parse_args()
return args
def main(args):
bar_colors = ['#56B4E9', '#009E73', '#D55E00', '#E69F00']
results_folder = Path(args.results_folder)
results = []
# collect results
for test_file in results_folder.glob("*_nightly_results.json"):
with open(test_file, "r") as f:
results = results + json.loads(f.read())
# generate markdown table
df = pd.DataFrame.from_dict(results)
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
with open(args.description, "r") as f:
description = f.read()
description = description.format(
nightly_results_benchmarking_table=md_table)
with open("nightly_results.md", "w") as f:
f.write(description)
plt.rcParams.update({'font.size': 20})
# plot results
fig, axes = plt.subplots(3, 3, figsize=(16, 14))
fig.subplots_adjust(hspace=1)
methods = ["vllm", "trt", "lmdeploy", "tgi"]
for i, model in enumerate(["llama8B", "llama70B", "mixtral8x7B"]):
for j, metric in enumerate(["TTFT", "ITL"]):
means, stds = [], []
for method in methods:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
filtered_df = df[target]
if filtered_df.empty:
means.append(0.)
stds.append(0.)
else:
means.append(filtered_df[f"Mean {metric} (ms)"].values[0])
std = filtered_df[f"Std {metric} (ms)"].values[0]
success = filtered_df["Successful req."].values[0]
stds.append(std / math.sqrt(success))
print(model, metric)
print(means, stds)
ax = axes[i, j + 1]
bars = ax.bar(
["vllm", "trt", "lmdeploy", "tgi"],
means,
yerr=stds,
capsize=10,
)
for idx, bar in enumerate(bars):
bar.set_color(bar_colors[idx])
ax.set_ylim(bottom=0)
ax.set_ylabel(f"{metric} (ms)")
ax.set_title(f"{model} {metric}")
ax.grid(axis='y')
metric = "Tput"
j = 0
if True:
tputs = []
for method in methods:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
filtered_df = df[target]
if filtered_df.empty:
tputs.append(0.)
else:
input_tput = filtered_df["Input Tput (tok/s)"].values[0]
output_tput = filtered_df["Output Tput (tok/s)"].values[0]
tputs.append(input_tput + output_tput)
print(model, metric)
print(tputs)
ax = axes[i, j]
bars = ax.bar(
["vllm", "trt", "lmdeploy", "tgi"],
tputs,
)
for idx, bar in enumerate(bars):
bar.set_color(bar_colors[idx])
ax.set_ylim(bottom=0)
ax.set_ylabel("Tput (token/s)")
ax.set_title(f"{model} {metric}")
ax.grid(axis='y')
fig.tight_layout()
fig.savefig("nightly_results.png", bbox_inches='tight', dpi=400)
if __name__ == '__main__':
args = parse_arguments()
main(args)