vllm/tests/multimodal/test_processor_kwargs.py
Peter Salas 6c0b7f548d
[Core][VLM] Add precise multi-modal placeholder tracking (#8346)
Signed-off-by: Peter Salas <peter@fixie.ai>
2024-11-01 16:21:10 -07:00

375 lines
14 KiB
Python

from array import array
from typing import Mapping
from unittest.mock import patch
import pytest
import torch
from vllm.inputs import (DecoderOnlyInputs, DummyData, InputContext,
InputRegistry, token_inputs)
from vllm.multimodal import MultiModalRegistry
from vllm.sequence import VLLM_TOKEN_ID_ARRAY_TYPE, SequenceData
from ..models.utils import build_model_context
# Used for fast tests where the model doesn't matter
DUMMY_MODEL_ID = "facebook/opt-125m"
# Used for tests that need a multimodal model
MULTIMODAL_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
# For mm_processor_kwargs - we test overrides by defining mocks for each place
# it is used, and ensuring that we can pass processor kwargs an override value
# to receive the intended result for things like sequence length etc.
DEFAULT_NUM_CROPS = 4
NUM_CROPS_OVERRIDE = 16
# Mocks for all of the places that we use the mm_processor_kwargs
# to override values in different callables
@pytest.fixture
def use_processor_mock():
"""Patches the internal model input processor with an override callable."""
def custom_processor(ctx: InputContext,
inputs: DecoderOnlyInputs,
*,
num_crops=DEFAULT_NUM_CROPS):
# For testing purposes, we don't worry about the llm inputs / return
# type validation, and just return the value of the kwarg that we
# clobber.
return num_crops
with patch("vllm.inputs.registry.InputRegistry._get_model_input_processor",
return_value=custom_processor):
yield
@pytest.fixture
def use_dummy_data_mock():
"""Patches the internal model input processor with an override callable."""
def custom_dummy_data_factory(self,
ctx: InputContext,
seq_len: int,
mm_counts: Mapping[str, int],
*,
num_crops=DEFAULT_NUM_CROPS):
seq_data = SequenceData(
array(VLLM_TOKEN_ID_ARRAY_TYPE, [0] * num_crops))
return DummyData(seq_data, None)
with patch(
"vllm.inputs.registry.InputRegistry._default_dummy_data_factory",
custom_dummy_data_factory):
yield
# Lazy import to avoid CUDA reinitialization error
def mm_model_cls():
from vllm.model_executor.models.phi3v import Phi3VForCausalLM
return Phi3VForCausalLM
# lambda whose signature matches max token calcs extra & mapper + extra kwargs
get_num_crops = lambda ctx, *, num_crops=DEFAULT_NUM_CROPS: num_crops
custom_mapper = lambda ctx, data, *, num_crops=DEFAULT_NUM_CROPS: {
"pixel_values": torch.zeros(size=(1, num_crops + 1, 3, 336, 336))
}
### Tests for default processor logic & mm_processor_kwargs wrapping
def test_default_processor_is_a_noop():
"""Ensure that by default, there is no processor override."""
dummy_registry = InputRegistry()
ctx = build_model_context(DUMMY_MODEL_ID)
processor = dummy_registry.create_input_processor(ctx.model_config)
proc_inputs = token_inputs(prompt_token_ids=[], prompt="")
proc_outputs = processor(inputs=proc_inputs)
assert proc_inputs is proc_outputs
def _get_num_crops_info(init_num_crops: int, inference_num_crops: int):
"""Get the init / inference kwargs and expected num_crops for this test."""
# If we have a value for num_crops, pass the override value and make
# sure we get that value as a return-value from out mock processor,
# otherwise fall back to the default value
init_kwargs = None if init_num_crops is None else {
"num_crops": init_num_crops
}
inference_kwargs = None if inference_num_crops is None else {
"num_crops": inference_num_crops
}
if inference_num_crops is not None:
expected_seq_count = inference_num_crops
elif init_num_crops is not None:
expected_seq_count = init_num_crops
else:
expected_seq_count = DEFAULT_NUM_CROPS
return init_kwargs, inference_kwargs, expected_seq_count
@pytest.mark.parametrize("init_num_crops,inference_num_crops", [
(None, None),
(NUM_CROPS_OVERRIDE, None),
(DEFAULT_NUM_CROPS, NUM_CROPS_OVERRIDE),
])
def test_input_processor_kwargs(use_processor_mock, init_num_crops,
inference_num_crops):
"""Ensure input processors can use processor kwargs."""
dummy_registry = InputRegistry()
init_kwargs, inference_kwargs, expected_seq_count = _get_num_crops_info(
init_num_crops, inference_num_crops)
ctx = build_model_context(DUMMY_MODEL_ID, mm_processor_kwargs=init_kwargs)
processor = dummy_registry.create_input_processor(ctx.model_config)
num_crops_val = processor(
token_inputs(prompt_token_ids=[],
prompt="",
mm_processor_kwargs=inference_kwargs))
assert num_crops_val == expected_seq_count
@pytest.mark.parametrize(
"mm_processor_kwargs",
[
# Not part of the signature
{
"does_not_exist": 100
},
# Part of the signature, not keyword only
{
"ctx": "something bad"
}
])
def test_processor_with_sad_kwarg_overrides(use_processor_mock,
mm_processor_kwargs):
"""Ensure that input processors filter out invalid mm_processor_kwargs"""
dummy_registry = InputRegistry()
# Should filter out the init time kwargs
ctx = build_model_context(DUMMY_MODEL_ID,
mm_processor_kwargs=mm_processor_kwargs)
processor = dummy_registry.create_input_processor(ctx.model_config)
# Should filter out the inference time kwargs
num_crops_val = processor(
token_inputs(prompt_token_ids=[],
prompt="",
mm_processor_kwargs=mm_processor_kwargs))
assert num_crops_val == DEFAULT_NUM_CROPS
### Test overrides for the dummy data
@pytest.mark.parametrize("num_crops", [None, NUM_CROPS_OVERRIDE])
def test_dummy_data_kwarg_overrides(use_dummy_data_mock, num_crops):
"""Ensure dummy data factories can use processor kwargs."""
mm_processor_kwargs = None if num_crops is None else {
"num_crops": num_crops
}
expected_seq_count = DEFAULT_NUM_CROPS if num_crops is None else num_crops
dummy_registry = InputRegistry()
ctx = build_model_context(DUMMY_MODEL_ID,
mm_processor_kwargs=mm_processor_kwargs)
mm_registry = MultiModalRegistry()
mm_registry.init_mm_limits_per_prompt(ctx.model_config)
# NOTE: seq_len is thrown away here since this will leverage the
# default dummy data factory that we have patched in, whose seq
# len is solely dependent on the value of the mm_processor_kwargs.
dummy_data = dummy_registry.dummy_data_for_profiling(
ctx.model_config, seq_len=-1, mm_registry=mm_registry)
assert len(dummy_data.seq_data.prompt_token_ids) == expected_seq_count
@pytest.mark.parametrize(
"mm_processor_kwargs",
[
# Not part of the signature
{
"does_not_exist": 100
},
# Part of the signature, not keyword only
{
"ctx": "something bad"
}
])
def test_dummy_data_with_sad_kwarg_overrides(use_dummy_data_mock,
mm_processor_kwargs):
"""Ensure the dummy data factory filters out invalid mm_processor_kwargs"""
dummy_registry = InputRegistry()
ctx = build_model_context(DUMMY_MODEL_ID,
mm_processor_kwargs=mm_processor_kwargs)
mm_registry = MultiModalRegistry()
mm_registry.init_mm_limits_per_prompt(ctx.model_config)
# NOTE: seq_len is thrown away here since this will leverage the
# default dummy data factory that we have patched in, whose seq
# len is solely dependent on the value of the mm_processor_kwargs.
dummy_data = dummy_registry.dummy_data_for_profiling(
ctx.model_config, seq_len=-1, mm_registry=mm_registry)
assert len(dummy_data.seq_data.prompt_token_ids) == DEFAULT_NUM_CROPS
### Test overrides for the max token count per multimodal instance
@pytest.mark.parametrize("num_crops", [None, NUM_CROPS_OVERRIDE])
def test_max_tokens_kwarg_overrides(num_crops):
"""Ensure max token calcs can use processor kwargs."""
mm_processor_kwargs = None if num_crops is None else {
"num_crops": num_crops
}
expected_seq_count = DEFAULT_NUM_CROPS if num_crops is None else num_crops
ctx = build_model_context(MULTIMODAL_MODEL_ID,
task="generate",
trust_remote_code=True,
mm_processor_kwargs=mm_processor_kwargs,
limit_mm_per_prompt={"image": 1})
mm_registry = MultiModalRegistry()
mm_registry.init_mm_limits_per_prompt(ctx.model_config)
# Patch the image registry for phi3v with our lambda that is compatible
# with overrides, then ensure that calling the method correctly echos
# our num_crops value back from the mm_processor_kwargs.
with patch.object(
mm_registry._get_plugin("image"),
"_max_mm_tokens",
{mm_model_cls(): get_num_crops},
):
max_multimodal_tokens = mm_registry.get_max_multimodal_tokens(
ctx.model_config)
assert expected_seq_count == max_multimodal_tokens
@pytest.mark.parametrize(
"mm_processor_kwargs",
[
# Not part of the signature
{
"does_not_exist": 100
},
# Part of the signature, not keyword only
{
"ctx": "something bad"
}
])
def test_max_tokens_with_sad_kwarg_overrides(mm_processor_kwargs):
"""Ensure that max token calcs filters out invalid mm_processor_kwargs"""
ctx = build_model_context(MULTIMODAL_MODEL_ID,
task="generate",
trust_remote_code=True,
mm_processor_kwargs=mm_processor_kwargs,
limit_mm_per_prompt={"image": 1})
mm_registry = MultiModalRegistry()
mm_registry.init_mm_limits_per_prompt(ctx.model_config)
# Similar before, but since these kwargs get filtered,
# we always get our default value back.
with patch.object(
mm_registry._get_plugin("image"),
"_max_mm_tokens",
{mm_model_cls(): get_num_crops},
):
max_multimodal_tokens = mm_registry.get_max_multimodal_tokens(
ctx.model_config)
assert max_multimodal_tokens == DEFAULT_NUM_CROPS
### Test overrides for the mapper
@pytest.mark.parametrize("num_crops", [DEFAULT_NUM_CROPS, NUM_CROPS_OVERRIDE])
def test_default_mapper_with_processor_kwargs(image_assets, num_crops):
"""Ensure that the mapper processor kwargs can fall back to HF models."""
# NOTE - we don't validate bad inputs for the default mapper, because it's
# through the automodel interface in transformers, so we can't easily
# inspect what kwargs are or are not allowed.
ctx = build_model_context(MULTIMODAL_MODEL_ID,
task="generate",
trust_remote_code=True,
mm_processor_kwargs={"num_crops": num_crops},
limit_mm_per_prompt={"image": 1})
mm_registry = MultiModalRegistry()
mm_registry.init_mm_limits_per_prompt(ctx.model_config)
image = image_assets[0].pil_image
mm_inputs = {"image": image}
mapped_inputs = mm_registry.map_input(ctx.model_config, mm_inputs)
# Phi3v pixel vals should have shape: [batch, num_crops+1, 3, 336, 336]
assert mapped_inputs["pixel_values"].shape[1] == num_crops + 1
@pytest.mark.parametrize("init_num_crops,inference_num_crops", [
(None, None),
(NUM_CROPS_OVERRIDE, None),
(DEFAULT_NUM_CROPS, NUM_CROPS_OVERRIDE),
])
def test_custom_mapper_kwarg_overrides(image_assets, init_num_crops,
inference_num_crops):
"""Ensure custom mappers can use processor kwargs."""
init_kwargs, inference_kwargs, expected_seq_count = _get_num_crops_info(
init_num_crops, inference_num_crops)
ctx = build_model_context(MULTIMODAL_MODEL_ID,
task="generate",
trust_remote_code=True,
mm_processor_kwargs=init_kwargs,
limit_mm_per_prompt={"image": 1})
mm_registry = MultiModalRegistry()
mm_registry.init_mm_limits_per_prompt(ctx.model_config)
image = image_assets[0].pil_image
mm_inputs = {"image": image}
# Patch the image registry for phi3v with our lambda that is compatible
# with overrides, then ensure that calling the method correctly echos
# our num_crops value back from the mm_processor_kwargs.
mm_registry._get_plugin("image").register_input_mapper(custom_mapper)(
mm_model_cls())
mapped_inputs = mm_registry.map_input(ctx.model_config, mm_inputs,
inference_kwargs)
assert mapped_inputs["pixel_values"].shape[1] == expected_seq_count + 1
@pytest.mark.parametrize(
"mm_processor_kwargs",
[
# Not part of the signature
{
"does_not_exist": 100
},
# Part of the signature, not keyword only
{
"ctx": "something bad"
}
])
def test_custom_mapper_with_sad_kwarg_overrides(image_assets,
mm_processor_kwargs):
"""Ensure that custom mappers filters out invalid mm_processor_kwargs"""
# Should filter out the init time kwargs
ctx = build_model_context(MULTIMODAL_MODEL_ID,
task="generate",
trust_remote_code=True,
mm_processor_kwargs=mm_processor_kwargs,
limit_mm_per_prompt={"image": 1})
mm_registry = MultiModalRegistry()
mm_registry.init_mm_limits_per_prompt(ctx.model_config)
image = image_assets[0].pil_image
mm_inputs = {"image": image}
# Patch the image registry for phi3v with our lambda that is compatible
# with overrides, then ensure that calling the method correctly echos
# our num_crops value back from the mm_processor_kwargs.
mm_registry._get_plugin("image").register_input_mapper(custom_mapper)(
mm_model_cls())
# Should filter out the inference time kwargs
mapped_inputs = mm_registry.map_input(
ctx.model_config, mm_inputs, mm_processor_kwargs=mm_processor_kwargs)
assert mapped_inputs["pixel_values"].shape[1] == DEFAULT_NUM_CROPS + 1