vllm/examples/fp8/extract_scales.py

368 lines
16 KiB
Python

import argparse
import glob
import json
import os
from typing import Any, Callable, Dict, List, Optional, Tuple
import numpy as np
import torch
from safetensors.torch import safe_open
from vllm.model_executor.layers.quantization.schema import QuantParamSchema
# Adapted from vllm/model_executor/model_loader/weight_utils.py
# The main differences are that we add the NPZ format and simplify
# its functionality drastically for our purposes (e.g. we assume that
# the quantized model exists locally and there is no need to download it)
def _prepare_hf_weights(
quantized_model_dir: str,
load_format: str = "auto",
fall_back_to_pt: bool = True,
) -> Tuple[List[str], bool]:
if not os.path.isdir(quantized_model_dir):
raise FileNotFoundError(
f"The quantized model directory `{quantized_model_dir}` "
"does not exist.")
use_safetensors = False
# Some quantized models use .pt files for storing the weights.
if load_format == "auto":
allow_patterns = ["*.safetensors", "*.bin"]
elif load_format == "safetensors":
use_safetensors = True
allow_patterns = ["*.safetensors"]
elif load_format == "pt":
allow_patterns = ["*.pt"]
elif load_format == "npz":
allow_patterns = ["*.npz"]
else:
raise ValueError(f"Unknown load_format: {load_format}")
if fall_back_to_pt:
allow_patterns += ["*.pt"]
hf_weights_files: List[str] = []
for pattern in allow_patterns:
hf_weights_files += glob.glob(
os.path.join(quantized_model_dir, pattern))
if len(hf_weights_files) > 0:
if pattern == "*.safetensors":
use_safetensors = True
break
if not use_safetensors:
# Exclude files that are not needed for inference.
# https://github.com/huggingface/transformers/blob/v4.34.0/src/transformers/trainer.py#L227-L233
blacklist = [
"training_args.bin",
"optimizer.bin",
"optimizer.pt",
"scheduler.pt",
"scaler.pt",
]
hf_weights_files = [
f for f in hf_weights_files
if not any(f.endswith(x) for x in blacklist)
]
if len(hf_weights_files) == 0:
raise RuntimeError(
f"Cannot find any model weights with `{quantized_model_dir}`")
return hf_weights_files, use_safetensors
# Adapted from vllm/model_executor/model_loader/weight_utils.py
def _hf_tensorfile_iterator(filename: str, load_format: str,
use_safetensors: bool):
if load_format == "npz":
assert not use_safetensors
with np.load(filename) as data:
for name in data.files:
param = torch.from_numpy(data[name])
yield name, param
elif use_safetensors:
with safe_open(filename, framework="pt") as f:
for name in f.keys(): # NOQA: SIM118
param = f.get_tensor(name)
yield name, param
else:
state = torch.load(filename, map_location="cpu")
for name, param in state.items():
yield name, param
del state
torch.cuda.empty_cache()
def _kv_scales_extractor(
hf_tensor_files: List[str],
use_safetensors: bool,
rank_keyword: str = "rank",
expected_tp_size: Optional[int] = None) -> Dict[int, Dict[int, float]]:
"""
Given a list of files containing tensor data, attempt to extract KV cache
scales from these files. Intended as a helper function taking in the output
from _prepare_hf_weights.
Args:
rank_keyword Matches the number immediately after this keyword in the
tensor filename to determine the TP rank corresponding
to said tensor file
expected_tp_size If specified, the TP size of the tensor files is checked
against this and an error is raised if they don't match.
Returns a dictionary mapping TP ranks to their relevant KV cache scales.
The per-rank scales are themselves represented as a dictionary of layer
indices to the respective per-layer scale.
"""
for char in rank_keyword:
assert not char.isdecimal(
), f"Rank keyword {rank_keyword} contains a numeric character!"
rank_scales_map: Dict[int, Dict[int, float]] = {}
for tensor_file in hf_tensor_files:
try:
rank_idx = tensor_file.find(rank_keyword)
if rank_idx != -1:
start_idx = rank_idx + len(rank_keyword)
stop_idx = start_idx
while stop_idx < len(
tensor_file) and tensor_file[stop_idx].isdecimal():
stop_idx += 1
if stop_idx == start_idx:
raise RuntimeError("Did not find rank # in filename.")
rank = int(tensor_file[start_idx:stop_idx])
elif len(hf_tensor_files) == 1:
# Since there is only one tensor file, we can assume
# that it's intended for TP rank 0
rank = 0
else:
raise RuntimeError(
f"Filename does not contain '{rank_keyword}'.")
except RuntimeError:
print("Unable to determine TP rank "
f"corresponding to file '{tensor_file}'")
raise
if rank not in rank_scales_map:
layer_scales_map: Dict[int, float] = {}
rank_scales_map[rank] = layer_scales_map
else:
raise RuntimeError(
f"Tensor file '{tensor_file}' shares TP rank {rank} "
"with another tensor file.")
module_delimiter = ":" if args.load_format == "npz" else "."
for name, param in _hf_tensorfile_iterator(tensor_file,
args.load_format,
use_safetensors):
if "kv_cache_scaling_factor" in name:
nums = [
int(s) for s in name.split(module_delimiter)
if s.isdecimal()
]
assert len(
nums) == 1, f"Could not determine layer idx for {name}"
layer_idx = nums[0]
assert layer_idx not in layer_scales_map, f"Duplicate scaling"\
f" factor corresponding to layer {layer_idx}"
try:
layer_scales_map[layer_idx] = param.item()
except RuntimeError:
print(
"This utility supports only per-tensor scalar scales "
f"for now. The tensor\n {name} = {param} \nis an "
"invalid scale factor.")
raise
if all(
len(layer_scales_map) == 0
for layer_scales_map in rank_scales_map.values()):
# Note: this is true even if the rank_scales_map is empty
print("WARNING: No KV cache scale factors found. No output saved.")
return None
empirical_tp_world_size = max(rank_scales_map.keys()) + 1
if expected_tp_size is not None:
assert expected_tp_size == empirical_tp_world_size, \
f"User expected TP world size = {expected_tp_size} " \
"from model but tool is expecting TP world size = " \
f"{empirical_tp_world_size} from model instead."
for i in range(empirical_tp_world_size):
assert i in rank_scales_map, "Expected TP world size = "\
f"{empirical_tp_world_size} but did not find KV " \
f"cache scaling factors for TP rank {i}"
print(f"Found TP world size = {empirical_tp_world_size} "
"when extracting KV cache scales!")
return rank_scales_map
def _metadata_extractor(quantized_model_dir: str,
metadata_extract_fns: \
Dict[str, Callable[[Dict[str, Any]], Any]]) \
-> Dict[str, Any]:
"""
Given a directory containing quantized model files, this function
aims to extract metadata from the JSON files within this directory.
Each JSON file is expected to represent a dictionary in JSON
format (referred to as a "JSON-dictionary"). Metadata extraction is
defined by a dictionary called metadata_extract_fns, where each
metadata field name is mapped to an extraction function.
These extraction functions are designed to take a JSON-dictionary
as their only argument and return the corresponding metadata.
While extraction functions are permitted to raise exceptions, they
should only raise a KeyError or ValueError if the metadata field
cannot be extracted from the current JSON-dictionary, yet there's
a possibility of finding it in another JSON-dictionary.
The function returns a dictionary that maps metadata fields to
their extracted data. The keys of this dictionary correspond exactly
to those in metadata_extract_fns. If any fields fail to be extracted,
their corresponding values are set to None, and a warning is printed.
"""
if not os.path.isdir(quantized_model_dir):
raise FileNotFoundError(
f"The quantized model directory `{quantized_model_dir}` "
"does not exist.")
metadata_files = glob.glob(os.path.join(quantized_model_dir, "*.json"))
result: Dict[str, Any] = {}
for file in metadata_files:
with open(file) as f:
try:
metadata = json.load(f)
except json.JSONDecodeError:
print(f"Could not parse `{file}` as a valid metadata file,"
" skipping it.")
continue
if not isinstance(metadata, dict):
print(f"The file `{file}` does not correspond to a "
"JSON-serialized dictionary, skipping it.")
continue
for metadata_name, extract_fn in metadata_extract_fns.items():
try:
metadata_info = extract_fn(metadata)
if metadata_name not in result:
result[metadata_name] = metadata_info
elif metadata_info != result[metadata_name]:
raise RuntimeError(
"Metadata mismatch! Originally found "
f"{metadata_name} = {result[metadata_name]} but "
f"now found {metadata_name} = {metadata_info} in "
f"`{file}`")
except KeyError:
# It is possible that a given file does not contain some
# of our selected metadata as it could be located in some
# other metadata file.
# 'EFINAE': extract_fn failure is not an error.
pass
except ValueError:
# See above.
pass
# Warn if we cannot find any of the requested metadata
for metadata_name in metadata_extract_fns:
if metadata_name not in result:
print("WARNING: Unable to find requested metadata field "
f"`{metadata_name}`, setting it to None.")
result[metadata_name] = None
return result
def main(args):
metadata_extract_fns = {
"model_type": lambda json_dict: json_dict["layers"][0]["decoder_type"],
"tp_size": lambda json_dict: int(json_dict["tensor_parallel"]),
"model_dtype": lambda json_dict: json_dict["dtype"]
}
recovered_metadata = _metadata_extractor(args.quantized_model,
metadata_extract_fns)
if args.tp_size is not None:
metadata_tp_size = recovered_metadata["tp_size"]
if metadata_tp_size is not None:
assert args.tp_size == metadata_tp_size, \
f"User expected TP world size = {args.tp_size} " \
f"but found TP world size = {metadata_tp_size} from metadata!"
expected_tp_size = args.tp_size or recovered_metadata["tp_size"]
rank_keyword = "rank"
hf_tensor_files, use_safetensors = _prepare_hf_weights(
args.quantized_model, args.load_format)
rank_scales_map = _kv_scales_extractor(hf_tensor_files, use_safetensors,
rank_keyword, expected_tp_size)
# Postprocess: formatting to the current schema. Consider pulling it
# out into a dedicated function should it ever become more complicated.
rank_scales_map = {
rank: {k: scale[k]
for k in sorted(scale.keys())}
for rank, scale in rank_scales_map.items()
}
# TODO: Expand this with activation and weights scaling factors when
# they are used in the future
schema = QuantParamSchema(
model_type=recovered_metadata["model_type"],
kv_cache={
"dtype": ("float8_e4m3fn" if len(rank_scales_map) > 0 else
recovered_metadata["model_dtype"]),
"scaling_factor":
rank_scales_map
},
)
if args.output_dir is None:
output_file = os.path.join(args.quantized_model, args.output_name)
else:
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
output_file = os.path.join(args.output_dir, args.output_name)
with open(output_file, 'w') as f:
f.write(schema.model_dump_json(indent=4))
print(f"Completed! KV cache scaling factors saved to {output_file}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="This simple utility extracts the "
"KV cache scaling factors from a quantized HF model "
"and saves them to a JSON file compatible with later "
"use by vLLM (pass this file to the appropriate "
"runtime typically using the argument "
"--quantization-param-path <filename>). This is only used "
"if the KV cache dtype is FP8 and on ROCm (AMD GPU).")
parser.add_argument(
"--quantized-model",
help="Specify the directory containing a single quantized HF model. "
"It is expected that the quantization format is FP8_E4M3, for use "
"on ROCm (AMD GPU).",
required=True)
parser.add_argument(
"--load_format",
help="Optionally specify the format of the model's tensor files "
"containing the KV cache scaling factors.",
choices=["auto", "safetensors", "npz", "pt"],
default="auto")
parser.add_argument(
"--output-dir",
help="Optionally specify the output directory. By default the "
"KV cache scaling factors will be saved in the model directory, "
"however you can override this behavior here.",
default=None)
parser.add_argument(
"--output-name",
help="Optionally specify the output filename.",
# TODO: Change this once additional scaling factors are enabled
default="kv_cache_scales.json")
parser.add_argument(
"--tp-size",
help="Optionally specify the tensor-parallel (TP) size that the "
"quantized model should correspond to. If specified, during KV "
"cache scaling factor extraction the observed TP size will be "
"checked against this and an error will be raised if there is "
"a mismatch. If not specified, the quantized model's expected "
"TP size is instead inferred from the largest TP rank observed. "
"The expected TP size is cross-checked against the TP ranks "
"observed in the quantized model and an error is raised if any "
"discrepancies are found.",
default=None,
type=int)
args = parser.parse_args()
main(args)