
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com> Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com> Co-authored-by: Prashant Gupta <prashantgupta@us.ibm.com> Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
863 lines
33 KiB
Python
863 lines
33 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import List
|
|
from unittest.mock import MagicMock
|
|
|
|
import pytest # noqa
|
|
|
|
from vllm.config import CacheConfig, SchedulerConfig
|
|
from vllm.core.scheduler import Scheduler
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
from vllm.engine.llm_engine import LLMEngine
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.sequence import Logprob, SequenceGroup
|
|
|
|
from .utils import create_dummy_prompt
|
|
|
|
|
|
def get_sequence_groups(scheduler_output):
|
|
return [s.seq_group for s in scheduler_output.scheduled_seq_groups]
|
|
|
|
|
|
def append_new_token(seq_group: SequenceGroup, token_id: int):
|
|
for seq in seq_group.get_seqs():
|
|
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
|
|
|
|
|
|
def schedule_and_update_computed_tokens(scheduler):
|
|
metas, out, _ = scheduler.schedule()
|
|
for s, meta in zip(out.scheduled_seq_groups, metas):
|
|
s.seq_group.update_num_computed_tokens(meta.token_chunk_size)
|
|
return metas, out
|
|
|
|
|
|
def test_simple():
|
|
"""Verify basic scheduling works."""
|
|
block_size = 4
|
|
num_seq_group = 4
|
|
max_model_len = 16
|
|
max_num_batched_tokens = 64
|
|
scheduler_config = SchedulerConfig("generate",
|
|
max_num_batched_tokens,
|
|
num_seq_group,
|
|
max_model_len,
|
|
enable_chunked_prefill=True)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 8
|
|
cache_config.num_gpu_blocks = 8
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
running: List[SequenceGroup] = []
|
|
|
|
# Add seq groups to scheduler.
|
|
for i in range(num_seq_group):
|
|
_, seq_group = create_dummy_prompt(str(i),
|
|
prompt_length=block_size,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
|
|
# Schedule seq groups prompts.
|
|
num_tokens = block_size * num_seq_group
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert set(get_sequence_groups(out)) == set(running)
|
|
assert out.num_batched_tokens == num_tokens
|
|
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
|
|
and not out.blocks_to_swap_out)
|
|
assert len(seq_group_meta) == num_seq_group
|
|
for s in running:
|
|
append_new_token(s, 1)
|
|
|
|
# Schedule seq groups generation.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert set(get_sequence_groups(out)) == set(running)
|
|
assert out.num_batched_tokens == num_seq_group
|
|
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
|
|
and not out.blocks_to_swap_out)
|
|
assert len(seq_group_meta) == num_seq_group
|
|
|
|
|
|
def test_chunk():
|
|
"""Verify prefills are chunked properly."""
|
|
block_size = 4
|
|
max_seqs = 60
|
|
max_model_len = 80
|
|
max_num_batched_tokens = 64
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 32
|
|
cache_config.num_gpu_blocks = 32
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
running: List[SequenceGroup] = []
|
|
|
|
# Add seq groups to scheduler.
|
|
for i in range(2):
|
|
_, seq_group = create_dummy_prompt(str(i),
|
|
prompt_length=60,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
|
|
# Verify the second request is chunked.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
print()
|
|
assert set(get_sequence_groups(out)) == set(running)
|
|
assert seq_group_meta[0].token_chunk_size == 60
|
|
# Verify it is chunked.
|
|
assert seq_group_meta[1].token_chunk_size == 4
|
|
assert out.num_prefill_groups == 2
|
|
assert out.num_batched_tokens == 64
|
|
# Only the first seq group has a new token appended.
|
|
append_new_token(running[0], 1)
|
|
|
|
# One chunked prefill, and one decoding.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert set(get_sequence_groups(out)) == set(running)
|
|
# The first one is prefill. Scheduler guarantees ordering.
|
|
assert seq_group_meta[0].token_chunk_size == 56
|
|
# The second one is a chunked prefill.
|
|
assert seq_group_meta[1].token_chunk_size == 1
|
|
assert out.num_prefill_groups == 1
|
|
assert out.num_batched_tokens == 57
|
|
|
|
|
|
def test_concurrent_chunking():
|
|
"""Verify prefills are chunked properly when
|
|
--max-num-partial-prefills is > 1"""
|
|
block_size = 4
|
|
max_seqs = 60
|
|
max_model_len = 2000
|
|
max_num_batched_tokens = 64
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
max_num_partial_prefills=2, # Up to 2 partial prefills at a time
|
|
)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 32
|
|
cache_config.num_gpu_blocks = 32
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
running: List[SequenceGroup] = []
|
|
|
|
# Add seq groups to scheduler.
|
|
for i in range(2):
|
|
_, seq_group = create_dummy_prompt(str(i),
|
|
prompt_length=60,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
|
|
# Verify both requests are chunked with half of max_num_batched_tokens each
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert set(get_sequence_groups(out)) == set(running)
|
|
assert seq_group_meta[0].token_chunk_size == 32
|
|
assert seq_group_meta[1].token_chunk_size == 32
|
|
assert out.num_prefill_groups == 2
|
|
assert out.num_batched_tokens == 64
|
|
|
|
# After one iteration, both should have 60 - 32 = 28 tokens left to prefill
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert set(get_sequence_groups(out)) == set(running)
|
|
assert seq_group_meta[0].token_chunk_size == 28
|
|
assert seq_group_meta[1].token_chunk_size == 28
|
|
assert out.num_prefill_groups == 2
|
|
assert out.num_batched_tokens == 56
|
|
|
|
|
|
def test_concurrent_chunking_large_requests():
|
|
"""Verify large prefill requests are run one at a time"""
|
|
block_size = 4
|
|
max_seqs = 60
|
|
max_model_len = 2000
|
|
max_num_batched_tokens = 64
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
max_num_partial_prefills=2, # Up to 2 partial prefills at a time
|
|
)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 3200 # large KV cache size for large requests
|
|
cache_config.num_gpu_blocks = 3200
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
|
|
# Add seq groups to scheduler.
|
|
for i in range(2):
|
|
_, seq_group = create_dummy_prompt(
|
|
str(i),
|
|
prompt_length=1200, # Very large prompt
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
|
|
# Verify only a single request is chunked, and it gets all 64 tokens
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(get_sequence_groups(out)) == 1
|
|
assert seq_group_meta[0].token_chunk_size == 64
|
|
assert out.num_prefill_groups == 1
|
|
assert out.num_batched_tokens == 64
|
|
|
|
|
|
def test_short_prompts_jump_long_prompts_in_queue():
|
|
"""Verify large prefill requests are punted behind smaller ones if
|
|
another large prefill request is already running"""
|
|
block_size = 4
|
|
max_seqs = 60
|
|
max_model_len = 2000
|
|
max_num_batched_tokens = 64
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
max_num_partial_prefills=2, # Up to 2 partial prefills at a time
|
|
)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 3200 # large KV cache size for large requests
|
|
cache_config.num_gpu_blocks = 3200
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
long_seqs: List[SequenceGroup] = []
|
|
short_seqs: List[SequenceGroup] = []
|
|
|
|
# Add 2 large seq groups to scheduler.
|
|
for i in range(2):
|
|
_, seq_group = create_dummy_prompt(
|
|
str(i),
|
|
prompt_length=1200, # Very large prompt
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
long_seqs.append(seq_group)
|
|
assert seq_group.is_prefill()
|
|
|
|
# Add 2 small seq groups behind them
|
|
for i in range(2):
|
|
_, seq_group = create_dummy_prompt(
|
|
str(i + 2),
|
|
prompt_length=40, # Very small prompt
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
short_seqs.append(seq_group)
|
|
assert seq_group.is_prefill()
|
|
|
|
# Verify one large req and 1 small req chunked
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert seq_group_meta[0].token_chunk_size == 32 # large req gets 32 tokens
|
|
assert seq_group_meta[1].token_chunk_size == 32 # small req gets 32 tokens
|
|
|
|
# all 4 are prefilling
|
|
assert long_seqs[0].is_prefill()
|
|
assert long_seqs[1].is_prefill()
|
|
assert short_seqs[0].is_prefill()
|
|
assert short_seqs[1].is_prefill()
|
|
# First short and first long sequences have been scheduled
|
|
assert long_seqs[0].first_seq.get_num_computed_tokens() == 32
|
|
assert long_seqs[1].first_seq.get_num_computed_tokens() == 0
|
|
assert short_seqs[0].first_seq.get_num_computed_tokens() == 32
|
|
assert short_seqs[1].first_seq.get_num_computed_tokens() == 0
|
|
|
|
assert out.num_prefill_groups == 2
|
|
assert out.num_batched_tokens == 64
|
|
|
|
# in the second iteration,
|
|
# the first small request had only 8 tokens left
|
|
# so it went to decode
|
|
# The other small req is scheduled
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
# the new small req got 64 - (32+8) tokens
|
|
assert seq_group_meta[0].token_chunk_size == 24
|
|
assert seq_group_meta[1].token_chunk_size == 32 # large req still got 32
|
|
# the other small request had only 8 tokens left
|
|
assert seq_group_meta[2].token_chunk_size == 8 # 40-32
|
|
|
|
# The first small request got to decode now
|
|
assert long_seqs[0].is_prefill()
|
|
assert long_seqs[1].is_prefill()
|
|
assert not short_seqs[0].is_prefill()
|
|
assert short_seqs[1].is_prefill()
|
|
# Both small requests have started in front of the second long request
|
|
assert long_seqs[0].first_seq.get_num_computed_tokens() == 64
|
|
assert long_seqs[1].first_seq.get_num_computed_tokens() == 0
|
|
assert short_seqs[0].first_seq.get_num_computed_tokens() == 40
|
|
assert short_seqs[1].first_seq.get_num_computed_tokens() == 24
|
|
|
|
assert out.num_prefill_groups == 3
|
|
assert out.num_batched_tokens == 64
|
|
# the first small seq group has a new token appended.
|
|
append_new_token(short_seqs[0], 1)
|
|
|
|
# in the third iteration,
|
|
# the first small request is already decoding
|
|
# the second small request only has 16 tokens left and will enter decoding
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert seq_group_meta[0].token_chunk_size == 32 # large still got 32
|
|
# small req finished prefilling 40-24=16 tokens
|
|
assert seq_group_meta[1].token_chunk_size == 16
|
|
assert seq_group_meta[2].token_chunk_size == 1 # decode
|
|
assert out.num_prefill_groups == 2
|
|
assert out.num_batched_tokens == 49 # (32+16+1 decode)
|
|
|
|
# both small requests have now reached decode
|
|
assert long_seqs[0].is_prefill()
|
|
assert long_seqs[1].is_prefill()
|
|
assert not short_seqs[0].is_prefill()
|
|
assert not short_seqs[1].is_prefill()
|
|
assert long_seqs[0].first_seq.get_num_computed_tokens() == 96
|
|
assert long_seqs[1].first_seq.get_num_computed_tokens() == 0
|
|
assert short_seqs[0].first_seq.get_num_computed_tokens() == 41
|
|
assert short_seqs[1].first_seq.get_num_computed_tokens() == 40
|
|
|
|
# both the small seq groups have a new token appended
|
|
append_new_token(short_seqs[0], 1)
|
|
append_new_token(short_seqs[1], 1)
|
|
|
|
# in the fourth iteration, both small requests are decoding
|
|
# so large request gets all the budget
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
|
|
# large req gets 62 tokens (minus 2 for decode)
|
|
assert seq_group_meta[0].token_chunk_size == 62
|
|
assert seq_group_meta[1].token_chunk_size == 1 # decode
|
|
assert seq_group_meta[2].token_chunk_size == 1 # decode
|
|
assert out.num_prefill_groups == 1
|
|
assert out.num_batched_tokens == 64
|
|
|
|
assert long_seqs[0].first_seq.get_num_computed_tokens() == 158
|
|
|
|
# assert long_seqs[0].is_prefill()
|
|
# assert long_seqs[1].is_prefill()
|
|
# assert not short_seqs[0].is_prefill()
|
|
# assert not short_seqs[1].is_prefill()
|
|
|
|
# # both the small seq groups have a new token appended
|
|
# append_new_token(short_seqs[0], 1)
|
|
# append_new_token(short_seqs[1], 1)
|
|
|
|
# # in the fifth iteration, large request gets all the budget
|
|
# # while both small requests are decoding
|
|
# seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
# assert seq_group_meta[0].token_chunk_size == 62
|
|
# assert seq_group_meta[1].token_chunk_size == 1 # decode
|
|
# assert seq_group_meta[2].token_chunk_size == 1 # decode
|
|
# assert out.num_prefill_groups == 1
|
|
# assert out.num_batched_tokens == 64
|
|
|
|
|
|
def test_complex():
|
|
block_size = 4
|
|
max_seqs = 60
|
|
max_model_len = 80
|
|
max_num_batched_tokens = 64
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 64
|
|
cache_config.num_gpu_blocks = 64
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
running: List[SequenceGroup] = []
|
|
|
|
# Add seq groups to scheduler.
|
|
for i in range(2):
|
|
_, seq_group = create_dummy_prompt(str(i),
|
|
prompt_length=60,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
assert seq_group.is_prefill()
|
|
|
|
# Verify the second request is chunked.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
|
|
assert set(get_sequence_groups(out)) == set(running)
|
|
assert seq_group_meta[0].token_chunk_size == 60
|
|
# Verify it is chunked.
|
|
assert seq_group_meta[1].token_chunk_size == 4
|
|
assert not running[0].is_prefill()
|
|
assert running[1].is_prefill()
|
|
assert out.num_prefill_groups == 2
|
|
assert out.num_batched_tokens == 64
|
|
# Only the first seq group has a new token appended.
|
|
append_new_token(running[0], 1)
|
|
|
|
# Add 2 more requests.
|
|
for i in range(2, 4):
|
|
_, seq_group = create_dummy_prompt(str(i),
|
|
prompt_length=60,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
|
|
# Decoding & chunked prefill & first chunk of 3rd request is scheduled.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(get_sequence_groups(out)) == 3
|
|
# The first one is the first chunked prefill.
|
|
assert seq_group_meta[0].token_chunk_size == 7
|
|
# The second one is the second new chunked prefill.
|
|
assert seq_group_meta[1].token_chunk_size == 56
|
|
# The last one is decode.
|
|
assert seq_group_meta[2].token_chunk_size == 1
|
|
# Two of them are in chunked prefill.
|
|
assert out.num_prefill_groups == 2
|
|
assert out.num_batched_tokens == 64
|
|
# The first 2 requests are now in decodine phase.
|
|
append_new_token(running[0], 1)
|
|
assert not running[0].is_prefill()
|
|
append_new_token(running[1], 1)
|
|
assert not running[1].is_prefill()
|
|
# The third request is still in prefill stage.
|
|
assert running[2].is_prefill()
|
|
|
|
|
|
def test_maximal_decoding():
|
|
"""Verify decoding requests are prioritized."""
|
|
block_size = 4
|
|
max_seqs = 2
|
|
max_model_len = 8
|
|
max_num_batched_tokens = 2
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 8
|
|
cache_config.num_gpu_blocks = 8
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
running: List[SequenceGroup] = []
|
|
|
|
# Add seq groups to scheduler.
|
|
for i in range(2):
|
|
_, seq_group = create_dummy_prompt(str(i),
|
|
prompt_length=2,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
assert seq_group.is_prefill()
|
|
|
|
# The first prefill is scheduled.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(get_sequence_groups(out)) == 1
|
|
assert seq_group_meta[0].token_chunk_size == 2
|
|
assert not running[0].is_prefill()
|
|
assert running[1].is_prefill()
|
|
assert out.num_prefill_groups == 1
|
|
assert out.num_batched_tokens == 2
|
|
# Only the first seq group has a new token appended.
|
|
append_new_token(running[0], 1)
|
|
|
|
# Create one more seq_group.
|
|
_, seq_group = create_dummy_prompt("3",
|
|
prompt_length=2,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
assert seq_group.is_prefill()
|
|
# The first decoding + second chunk is scheduled.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(get_sequence_groups(out)) == 2
|
|
assert seq_group_meta[0].token_chunk_size == 1
|
|
assert seq_group_meta[1].token_chunk_size == 1
|
|
assert not running[0].is_prefill()
|
|
assert running[1].is_prefill()
|
|
assert running[2].is_prefill()
|
|
assert out.num_prefill_groups == 1
|
|
assert out.num_batched_tokens == 2
|
|
append_new_token(running[0], 1)
|
|
|
|
# Decoding + running prefill is prioritized.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(get_sequence_groups(out)) == 2
|
|
assert seq_group_meta[0].token_chunk_size == 1
|
|
assert seq_group_meta[1].token_chunk_size == 1
|
|
assert not running[0].is_prefill()
|
|
assert not running[1].is_prefill()
|
|
assert out.num_prefill_groups == 1
|
|
assert out.num_batched_tokens == 2
|
|
append_new_token(running[0], 1)
|
|
append_new_token(running[1], 1)
|
|
|
|
# Only decoding is prioritized.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(get_sequence_groups(out)) == 2
|
|
assert seq_group_meta[0].token_chunk_size == 1
|
|
assert seq_group_meta[1].token_chunk_size == 1
|
|
assert not running[0].is_prefill()
|
|
assert not running[1].is_prefill()
|
|
assert out.num_prefill_groups == 0
|
|
assert out.num_batched_tokens == 2
|
|
append_new_token(running[0], 1)
|
|
append_new_token(running[1], 1)
|
|
|
|
# After aborting the decoding request, the fcfs new prefill is prioritized.
|
|
scheduler.abort_seq_group(running[0].request_id)
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(get_sequence_groups(out)) == 2
|
|
assert seq_group_meta[0].token_chunk_size == 1
|
|
assert seq_group_meta[1].token_chunk_size == 1
|
|
assert not running[1].is_prefill()
|
|
assert running[2].is_prefill()
|
|
assert out.num_prefill_groups == 1
|
|
assert out.num_batched_tokens == 2
|
|
|
|
|
|
def test_prompt_limit():
|
|
"""Verify max_num_batched_tokens < max_model_len is possible."""
|
|
block_size = 4
|
|
max_seqs = 32
|
|
max_model_len = 64
|
|
max_num_batched_tokens = 32
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 16
|
|
cache_config.num_gpu_blocks = 16
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
running: List[SequenceGroup] = []
|
|
|
|
_, seq_group = create_dummy_prompt("1",
|
|
prompt_length=48,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
assert seq_group.is_prefill()
|
|
|
|
# The prompt length > max_num_batched_tokens should be still scheduled.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(get_sequence_groups(out)) == 1
|
|
assert seq_group_meta[0].token_chunk_size == 32
|
|
assert running[0].is_prefill()
|
|
assert out.num_prefill_groups == 1
|
|
assert out.num_batched_tokens == 32
|
|
|
|
|
|
def test_prompt_limit_exceed():
|
|
block_size = 4
|
|
max_seqs = 64
|
|
max_model_len = 32
|
|
max_num_batched_tokens = 64
|
|
scheduler_config = SchedulerConfig("generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 16
|
|
cache_config.num_gpu_blocks = 16
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
running: List[SequenceGroup] = []
|
|
_, seq_group = create_dummy_prompt("2",
|
|
prompt_length=48,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
assert seq_group.is_prefill()
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(out.ignored_seq_groups) == 1
|
|
assert out.ignored_seq_groups[0] == seq_group
|
|
|
|
|
|
def test_chunked_prefill_preempt():
|
|
"""Verify preempt works with chunked prefill requests"""
|
|
block_size = 4
|
|
max_seqs = 30
|
|
max_model_len = 200
|
|
max_num_batched_tokens = 30
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 16
|
|
cache_config.num_gpu_blocks = 16
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
|
|
_, seq_group = create_dummy_prompt("1",
|
|
prompt_length=60,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
_, out = schedule_and_update_computed_tokens(scheduler)
|
|
# The request is chunked.
|
|
# prefill scheduled now.
|
|
assert len(out.scheduled_seq_groups) == 1
|
|
assert out.num_prefill_groups == 1
|
|
assert seq_group.is_prefill()
|
|
assert out.num_batched_tokens == max_num_batched_tokens
|
|
|
|
# The request should be preempted.
|
|
scheduler.block_manager.can_append_slots = MagicMock()
|
|
|
|
def cannot_append_second_group1(seq_group, num_lookahead_slots):
|
|
return seq_group.request_id != "1"
|
|
|
|
scheduler.block_manager.can_append_slots.side_effect = (
|
|
cannot_append_second_group1)
|
|
|
|
# The running prefill is now preempted.
|
|
_, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(out.scheduled_seq_groups) == 0
|
|
assert out.num_batched_tokens == 0
|
|
assert out.blocks_to_swap_out == []
|
|
assert out.blocks_to_swap_in == []
|
|
|
|
# Make sure we can reschedule preempted request.
|
|
_, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(out.scheduled_seq_groups) == 1
|
|
assert out.num_prefill_groups == 1
|
|
assert seq_group.is_prefill()
|
|
assert out.num_batched_tokens == max_num_batched_tokens
|
|
assert seq_group.get_num_uncomputed_tokens() == 30
|
|
|
|
# We should be able to run prefill twice as it is chunked.
|
|
def cannot_append_second_group2(seq_group, num_lookahead_slots):
|
|
return True
|
|
|
|
scheduler.block_manager.can_append_slots.side_effect = (
|
|
cannot_append_second_group2)
|
|
_, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert len(out.scheduled_seq_groups) == 1
|
|
assert out.num_prefill_groups == 1
|
|
assert not seq_group.is_prefill()
|
|
assert out.num_batched_tokens == max_num_batched_tokens
|
|
|
|
|
|
@pytest.mark.parametrize("num_scheduler_steps", [1, 5])
|
|
def test_chunked_prefill_spec_prefill(num_scheduler_steps):
|
|
"""Verify that the num_lookahead_slots is set appropriately for an all"""
|
|
"""prefill batch depending on whether multi-step scheduling is enabled"""
|
|
"""or not"""
|
|
block_size = 4
|
|
max_seqs = 30
|
|
max_model_len = 200
|
|
max_num_batched_tokens = 30
|
|
num_lookahead_slots = 4
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
num_lookahead_slots=num_lookahead_slots,
|
|
num_scheduler_steps=num_scheduler_steps,
|
|
)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 16
|
|
cache_config.num_gpu_blocks = 16
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
|
|
_, seq_group = create_dummy_prompt("1",
|
|
prompt_length=30,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
_, out = schedule_and_update_computed_tokens(scheduler)
|
|
# The request is chunked.
|
|
# prefill scheduled now.
|
|
assert len(out.scheduled_seq_groups) == 1
|
|
assert out.num_prefill_groups == 1
|
|
assert out.num_batched_tokens == max_num_batched_tokens
|
|
print(out.num_lookahead_slots)
|
|
assert out.num_lookahead_slots == (0 if (num_scheduler_steps == 1) else
|
|
num_lookahead_slots)
|
|
|
|
|
|
def test_chunked_prefill_max_seqs():
|
|
block_size = 4
|
|
max_seqs = 2
|
|
max_model_len = 80
|
|
max_num_batched_tokens = 64
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
|
cache_config.num_cpu_blocks = 128
|
|
cache_config.num_gpu_blocks = 128
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
running: List[SequenceGroup] = []
|
|
|
|
_, seq_group = create_dummy_prompt("1",
|
|
prompt_length=65,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
# The first prefill is chunked.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert seq_group_meta[0].token_chunk_size == max_num_batched_tokens
|
|
assert len(get_sequence_groups(out)) == 1
|
|
|
|
# Add new requests.
|
|
for i in range(4):
|
|
_, seq_group = create_dummy_prompt(str(i),
|
|
prompt_length=65,
|
|
block_size=block_size)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
|
|
# Make sure only 2 requests are scheduled.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert out.num_batched_tokens == max_num_batched_tokens
|
|
assert len(get_sequence_groups(out)) == 2
|
|
assert not running[0].is_prefill()
|
|
assert running[1].is_prefill()
|
|
append_new_token(running[0], 1)
|
|
|
|
# Although we have enough token budget, we can only schedule max_seqs.
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert seq_group_meta[0].token_chunk_size == 2
|
|
assert seq_group_meta[1].token_chunk_size == 1
|
|
assert out.num_batched_tokens == 3
|
|
assert len(get_sequence_groups(out)) == max_seqs
|
|
assert not running[0].is_prefill()
|
|
assert not running[1].is_prefill()
|
|
|
|
|
|
def test_prefix_caching():
|
|
"""Verify allocating full blocks when prefix caching is enabled."""
|
|
block_size = 4
|
|
max_seqs = 10
|
|
max_model_len = 80
|
|
max_num_batched_tokens = 64
|
|
scheduler_config = SchedulerConfig(
|
|
"generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
cache_config = CacheConfig(block_size,
|
|
1.0,
|
|
1,
|
|
"auto",
|
|
enable_prefix_caching=True)
|
|
cache_config.num_cpu_blocks = 0
|
|
cache_config.num_gpu_blocks = 32
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
running: List[SequenceGroup] = []
|
|
|
|
# Add seq groups to scheduler.
|
|
for i in range(2):
|
|
_, seq_group = create_dummy_prompt(str(i),
|
|
block_size=block_size,
|
|
prompt_length=50)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert set(get_sequence_groups(out)) == set(running)
|
|
assert seq_group_meta[0].token_chunk_size == 50
|
|
# Verify it is chunked. Note that although the budget is 64-50=14,
|
|
# we only allocate full blocks for prefix caching, so only 4*(14//4)=12
|
|
# tokens are allocated.
|
|
assert seq_group_meta[1].token_chunk_size == 12
|
|
assert out.num_prefill_groups == 2
|
|
assert out.num_batched_tokens == 62
|
|
|
|
|
|
def test_prefix_caching_with_concurrent_partial_prefills():
|
|
"""Verify allocating full blocks when prefix caching is enabled with
|
|
--max-num-partial-prefills > 1."""
|
|
block_size = 4
|
|
max_seqs = 10
|
|
max_model_len = 8000
|
|
max_num_batched_tokens = 60 # With two slots, each slot will get 30 tokens
|
|
scheduler_config = SchedulerConfig("generate",
|
|
max_num_batched_tokens,
|
|
max_seqs,
|
|
max_model_len,
|
|
enable_chunked_prefill=True,
|
|
max_num_partial_prefills=2)
|
|
cache_config = CacheConfig(block_size,
|
|
1.0,
|
|
1,
|
|
"auto",
|
|
enable_prefix_caching=True)
|
|
cache_config.num_cpu_blocks = 0
|
|
cache_config.num_gpu_blocks = 32
|
|
scheduler = Scheduler(scheduler_config, cache_config, None)
|
|
running: List[SequenceGroup] = []
|
|
|
|
# Add seq groups to scheduler.
|
|
for i in range(2):
|
|
_, seq_group = create_dummy_prompt(str(i),
|
|
block_size=block_size,
|
|
prompt_length=50)
|
|
scheduler.add_seq_group(seq_group)
|
|
running.append(seq_group)
|
|
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert set(get_sequence_groups(out)) == set(running)
|
|
# To partially prefill both sequences, both can chunk up to 30 tokens
|
|
# But the next lowest multiple of the block size (4) is 28
|
|
assert seq_group_meta[0].token_chunk_size == 28
|
|
assert seq_group_meta[1].token_chunk_size == 28
|
|
assert out.num_prefill_groups == 2
|
|
assert out.num_batched_tokens == 56
|
|
|
|
# On the next iteration, both sequences should finish prefill
|
|
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
|
assert set(get_sequence_groups(out)) == set(running)
|
|
# Both sequences have 50 - 28 = 22 tokens left to prefill.
|
|
# This is not a multiple of the block size, but we don't care since we don't
|
|
# cache the final partial block of prefix sequences
|
|
assert seq_group_meta[0].token_chunk_size == 22
|
|
assert seq_group_meta[1].token_chunk_size == 22
|
|
assert out.num_prefill_groups == 2
|
|
assert out.num_batched_tokens == 44
|
|
|
|
|
|
@pytest.mark.parametrize("model", ["facebook/opt-125m"])
|
|
@pytest.mark.parametrize("max_num_partial_prefills", [2, 4, 8])
|
|
def test_chunked_prefill_with_actual_engine(model: str,
|
|
max_num_partial_prefills: int):
|
|
"""Make sure the model can actually sample with concurrent
|
|
partial prefills
|
|
"""
|
|
|
|
prompt = "hello" * 40
|
|
|
|
engine_args = EngineArgs(
|
|
model=model,
|
|
max_num_partial_prefills=max_num_partial_prefills,
|
|
max_num_batched_tokens=40,
|
|
max_num_seqs=8,
|
|
enable_chunked_prefill=True,
|
|
gpu_memory_utilization=0.8,
|
|
)
|
|
|
|
engine = LLMEngine.from_engine_args(engine_args)
|
|
sampling_params = SamplingParams(temperature=0)
|
|
|
|
for req_num in range(max_num_partial_prefills):
|
|
engine.add_request(f"{req_num}", prompt, sampling_params)
|
|
# first step
|
|
request_outputs = engine.step()
|
|
# means all are prefilling
|
|
assert len(request_outputs) == 0
|
|
assert len(engine.scheduler[0].running) == max_num_partial_prefills
|