
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
150 lines
5.8 KiB
Python
150 lines
5.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Tests whether FP8 computation is enabled correctly.
|
|
|
|
Run `pytest tests/quantization/test_fp8.py --forked`.
|
|
"""
|
|
import pytest
|
|
import torch
|
|
|
|
from tests.quantization.utils import is_quant_method_supported
|
|
from vllm import _custom_ops as ops
|
|
from vllm.model_executor.layers.quantization.fp8 import (Fp8KVCacheMethod,
|
|
Fp8LinearMethod)
|
|
from vllm.platforms import current_platform
|
|
|
|
MODELS = [
|
|
"neuralmagic/Meta-Llama-3-8B-Instruct-FP8-KV",
|
|
"nm-testing/Phi-3-mini-128k-instruct-FP8",
|
|
"nm-testing/Qwen2-0.5B-Instruct-FP8-SkipQKV",
|
|
]
|
|
|
|
|
|
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
|
|
reason="FP8 is not supported on this GPU type.")
|
|
@pytest.mark.parametrize("model_id", MODELS)
|
|
@pytest.mark.parametrize("force_marlin", [False, True])
|
|
def test_model_load_and_run(vllm_runner, model_id: str, force_marlin: bool,
|
|
monkeypatch) -> None:
|
|
if force_marlin:
|
|
monkeypatch.setenv("VLLM_TEST_FORCE_FP8_MARLIN", "1")
|
|
|
|
with vllm_runner(model_id) as llm:
|
|
# note: this does not test accuracy, just that we can run through
|
|
# see lm-eval tests for accuracy
|
|
outputs = llm.generate_greedy(prompts=["Hello my name is"],
|
|
max_tokens=10)
|
|
print(outputs[0][1])
|
|
|
|
|
|
KV_CACHE_MODELS = [
|
|
# Deprecated AutoFP8 format using .kv_scale
|
|
"neuralmagic/Meta-Llama-3-8B-Instruct-FP8-KV",
|
|
# AutoFP8 format using separate .k_scale and .v_scale
|
|
"nm-testing/Qwen2-1.5B-Instruct-FP8-K-V",
|
|
]
|
|
|
|
|
|
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
|
|
reason="FP8 is not supported on this GPU type.")
|
|
@pytest.mark.parametrize("model_id", KV_CACHE_MODELS)
|
|
def test_kv_cache_model_load_and_run(vllm_runner, model_id: str):
|
|
with vllm_runner(model_id, kv_cache_dtype="fp8") as llm:
|
|
|
|
def check_model(model):
|
|
attn = model.model.layers[0].self_attn.attn
|
|
|
|
assert isinstance(attn.quant_method, Fp8KVCacheMethod)
|
|
|
|
# NOTE: it is valid for scales to be 1.0 (default value), but
|
|
# we know these checkpoints have scales < 1.0
|
|
assert 0.0 < attn._k_scale < 1.0
|
|
assert 0.0 < attn._v_scale < 1.0
|
|
|
|
llm.apply_model(check_model)
|
|
|
|
# note: this does not test accuracy, just that we can run through
|
|
# see lm-eval tests for accuracy
|
|
outputs = llm.generate_greedy(prompts=["Hello my name is"],
|
|
max_tokens=10)
|
|
print(outputs[0][1])
|
|
|
|
|
|
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
|
|
reason="FP8 is not supported on this GPU type.")
|
|
@pytest.mark.parametrize("kv_cache_dtype", ["auto", "fp8"])
|
|
@pytest.mark.parametrize("force_marlin", [False, True])
|
|
def test_load_fp16_model(vllm_runner, kv_cache_dtype: str, force_marlin: bool,
|
|
monkeypatch) -> None:
|
|
if force_marlin:
|
|
monkeypatch.setenv("VLLM_TEST_FORCE_FP8_MARLIN", "1")
|
|
|
|
with vllm_runner("facebook/opt-125m",
|
|
quantization="fp8",
|
|
kv_cache_dtype=kv_cache_dtype) as llm:
|
|
|
|
def check_model(model):
|
|
fc1 = model.model.decoder.layers[0].fc1
|
|
assert isinstance(fc1.quant_method, Fp8LinearMethod)
|
|
if kv_cache_dtype == "fp8":
|
|
attn = model.model.decoder.layers[0].self_attn.attn
|
|
assert isinstance(attn.quant_method, Fp8KVCacheMethod)
|
|
assert attn._k_scale == 1.0
|
|
assert attn._v_scale == 1.0
|
|
|
|
if current_platform.has_device_capability(89) and not force_marlin:
|
|
# For GPUs with hardware support, we keep weights in fp8
|
|
assert fc1.weight.dtype == torch.float8_e4m3fn
|
|
else:
|
|
# For GPUs without hardware support, we pack the fp8 weights
|
|
# for weight-only quantization using Marlin kernels
|
|
assert fc1.weight.dtype == torch.int32
|
|
|
|
llm.apply_model(check_model)
|
|
|
|
|
|
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
|
|
reason="FP8 is not supported on this GPU type.")
|
|
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
def test_scaled_fp8_quant(dtype) -> None:
|
|
|
|
def quantize_ref(tensor, inv_scale):
|
|
# The reference implementation that fully aligns to
|
|
# the kernel being tested.
|
|
finfo = torch.finfo(torch.float8_e4m3fn)
|
|
scale = inv_scale.reciprocal()
|
|
qweight = (tensor.to(torch.float32) * scale).clamp(min=finfo.min,
|
|
max=finfo.max)
|
|
qweight = qweight.to(torch.float8_e4m3fn)
|
|
return qweight
|
|
|
|
def per_tensor_dequantize(tensor, inv_scale, dtype):
|
|
fake_qweight = tensor.to(dtype)
|
|
dq_weight = fake_qweight * inv_scale
|
|
return dq_weight
|
|
|
|
# Note that we use a shape % 4 != 0 to cover edge cases,
|
|
# because scaled_fp8_quant is vectorized by 4.
|
|
x = (torch.randn(size=(11, 11), device="cuda") * 13).to(dtype)
|
|
|
|
# Dynamic quantization
|
|
ref_y, inv_scale = ops.scaled_fp8_quant(x, None)
|
|
ref_y = per_tensor_dequantize(ref_y, inv_scale, dtype)
|
|
|
|
# Reference dynamic quantizaton
|
|
y = quantize_ref(x, inv_scale)
|
|
torch.testing.assert_close(ref_y,
|
|
per_tensor_dequantize(y, inv_scale, dtype))
|
|
|
|
# Static quantization
|
|
y, _ = ops.scaled_fp8_quant(x, inv_scale)
|
|
torch.testing.assert_close(ref_y,
|
|
per_tensor_dequantize(y, inv_scale, dtype))
|
|
|
|
# Padding
|
|
y, _ = ops.scaled_fp8_quant(x, inv_scale, num_token_padding=17)
|
|
assert y.shape[0] == 17
|
|
torch.testing.assert_close(
|
|
ref_y,
|
|
per_tensor_dequantize(torch.narrow(y, 0, 0, x.shape[0]), inv_scale,
|
|
dtype))
|