vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py
Chauncey 3b00ff9138
[Bugfix][v1] xgrammar structured output supports Enum. (#15594)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-03-28 06:14:53 -07:00

446 lines
15 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations
import json
import re
from enum import Enum
from typing import Any
import jsonschema
import pytest
from pydantic import BaseModel
from vllm.entrypoints.llm import LLM
from vllm.outputs import RequestOutput
from vllm.sampling_params import GuidedDecodingParams, SamplingParams
GUIDED_DECODING_BACKENDS_V1 = ["xgrammar", "guidance"]
MODELS_TO_TEST = [
"Qwen/Qwen2.5-1.5B-Instruct", "mistralai/Ministral-8B-Instruct-2410"
]
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_json_completion(
monkeypatch: pytest.MonkeyPatch,
sample_json_schema: dict[str, Any],
guided_decoding_backend: str,
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(json=sample_json_schema))
outputs = llm.generate(prompts=[
f"Give an example JSON for an employee profile "
f"that fits this schema: {sample_json_schema}"
] * 2,
sampling_params=sampling_params,
use_tqdm=True)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
prompt = output.prompt
generated_text = output.outputs[0].text
assert generated_text is not None
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
output_json = json.loads(generated_text)
jsonschema.validate(instance=output_json, schema=sample_json_schema)
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_json_completion_disable_any_whitespace(
monkeypatch: pytest.MonkeyPatch,
sample_json_schema: dict[str, Any],
guided_decoding_backend: str,
model_name: str,
):
if guided_decoding_backend != "xgrammar":
pytest.skip("disable-any-whitespace is only supported for xgrammar.")
guided_decoding_backend = 'xgrammar:disable-any-whitespace'
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(json=sample_json_schema))
outputs = llm.generate(prompts=[
f"Give an example JSON for an employee profile "
f"that fits this schema: {sample_json_schema}"
] * 2,
sampling_params=sampling_params,
use_tqdm=True)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
prompt = output.prompt
generated_text = output.outputs[0].text
assert generated_text is not None
assert "\n" not in generated_text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
output_json = json.loads(generated_text)
jsonschema.validate(instance=output_json, schema=sample_json_schema)
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_json_object(
monkeypatch: pytest.MonkeyPatch,
guided_decoding_backend: str,
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=100,
n=2,
guided_decoding=GuidedDecodingParams(json_object=True))
outputs = llm.generate(
prompts=("Generate a JSON object with curly braces for a person with "
"name and age fields for John Smith who is 31 years old."),
sampling_params=sampling_params,
use_tqdm=True)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
for i in range(2):
generated_text = output.outputs[i].text
print(generated_text)
assert generated_text is not None
# Parse to verify it is valid JSON
parsed_json = json.loads(generated_text)
allowed_types: tuple[type, ...] = (dict, )
if guided_decoding_backend == "xgrammar":
# TODO - we are currently too permissive with xgrammar and
# allow # any valid json (typically comes back as a list or
# object). We can fix this by specifying a jsonschema of
# {"type": "object"}, # but we need this fix in a release
# first: https://github.com/mlc-ai/xgrammar/pull/264
allowed_types = (dict, list)
assert isinstance(parsed_json, allowed_types)
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1 + ["auto"])
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_json_unsupported_schema(
monkeypatch: pytest.MonkeyPatch,
unsupported_json_schema: dict[str, Any],
guided_decoding_backend: str,
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(json=unsupported_json_schema))
if guided_decoding_backend == "xgrammar":
with pytest.raises(ValueError,
match="The provided JSON schema contains features "
"not supported by xgrammar."):
llm.generate(prompts=[
f"Give an example JSON for an employee profile "
f"that fits this schema: {unsupported_json_schema}"
] * 2,
sampling_params=sampling_params,
use_tqdm=True)
else:
# This should work for both "guidance" and "auto".
outputs = llm.generate(
prompts=("Give an example JSON object for a grade "
"that fits this schema: "
f"{unsupported_json_schema}"),
sampling_params=sampling_params,
use_tqdm=True)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
generated_text = output.outputs[0].text
assert generated_text is not None
print(generated_text)
# Parse to verify it is valid JSON
parsed_json = json.loads(generated_text)
assert isinstance(parsed_json, dict)
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_grammar_ebnf(
monkeypatch: pytest.MonkeyPatch,
sample_sql_ebnf: str,
guided_decoding_backend: str,
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(grammar=sample_sql_ebnf))
outputs = llm.generate(
prompts=("Generate a sql statement that selects col_1 from "
"table_1 where it is equal to 1"),
sampling_params=sampling_params,
use_tqdm=True,
)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
prompt = output.prompt
generated_text = output.outputs[0].text
assert generated_text is not None
# remove spaces for comparison b/c we removed them in the grammar
ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace(
" ", "")
assert generated_text.strip() == ground_truth
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_grammar_lark(
monkeypatch: pytest.MonkeyPatch,
sample_sql_lark: str,
guided_decoding_backend: str,
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(grammar=sample_sql_lark))
outputs = llm.generate(
prompts=("Generate a sql statement that selects col_1 from "
"table_1 where it is equal to 1"),
sampling_params=sampling_params,
use_tqdm=True,
)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
prompt = output.prompt
generated_text = output.outputs[0].text
assert generated_text is not None
# use Lark to parse the output, and make sure it's a valid parse tree
from lark import Lark
parser = Lark(sample_sql_lark)
parser.parse(generated_text)
# remove spaces for comparison b/c we removed them in the grammar
ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace(
" ", "")
assert generated_text.strip() == ground_truth
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_grammar_ebnf_invalid(
monkeypatch: pytest.MonkeyPatch,
guided_decoding_backend: str,
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(grammar="not a grammar"))
with pytest.raises(ValueError, match="Failed to convert the grammar "):
llm.generate(
prompts=("Generate a sql statement that selects col_1 from "
"table_1 where it is equal to 1"),
sampling_params=sampling_params,
use_tqdm=True,
)
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_regex(
monkeypatch: pytest.MonkeyPatch,
sample_regex: str,
guided_decoding_backend: str,
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(regex=sample_regex))
outputs = llm.generate(
prompts=[
f"Give an example IPv4 address with this regex: {sample_regex}"
] * 2,
sampling_params=sampling_params,
use_tqdm=True,
)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
prompt = output.prompt
generated_text = output.outputs[0].text
print(generated_text)
assert generated_text is not None
assert re.fullmatch(sample_regex, generated_text) is not None
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_choice_completion(
monkeypatch: pytest.MonkeyPatch,
sample_guided_choice: str,
guided_decoding_backend: str,
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(choice=sample_guided_choice))
outputs = llm.generate(
prompts="The best language for type-safe systems programming is ",
sampling_params=sampling_params,
use_tqdm=True)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
prompt = output.prompt
generated_text = output.outputs[0].text
print(generated_text)
assert generated_text is not None
assert generated_text in sample_guided_choice
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
class CarType(str, Enum):
sedan = "sedan"
suv = "SUV"
truck = "Truck"
coupe = "Coupe"
class CarDescription(BaseModel):
brand: str
model: str
car_type: CarType
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_json_completion_with_enum(
monkeypatch: pytest.MonkeyPatch,
guided_decoding_backend: str,
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
json_schema = CarDescription.model_json_schema()
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(json=json_schema))
outputs = llm.generate(
prompts="Generate a JSON with the brand, model and car_type of"
"the most iconic car from the 90's",
sampling_params=sampling_params,
use_tqdm=True)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
prompt = output.prompt
generated_text = output.outputs[0].text
assert generated_text is not None
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
output_json = json.loads(generated_text)
jsonschema.validate(instance=output_json, schema=json_schema)