203 lines
7.4 KiB
Python
203 lines
7.4 KiB
Python
"""1D OPT model compatible with HuggingFace weights."""
|
|
import torch
|
|
from torch import nn
|
|
from transformers import OPTConfig
|
|
from transformers import PreTrainedModel
|
|
|
|
|
|
class OPTLearnedPositionalEmbedding(nn.Embedding):
|
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int):
|
|
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
|
|
# and adjust num_embeddings appropriately. Other models don't have this hack
|
|
self.offset = 2
|
|
super().__init__(num_embeddings + self.offset, embedding_dim)
|
|
|
|
def forward(self, positions: torch.LongTensor):
|
|
return super().forward(positions + self.offset)
|
|
|
|
|
|
class OPTAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
bias: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
self.head_dim = embed_dim // num_heads
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
q = self.q_proj(hidden_states) * self.scaling
|
|
k = self.k_proj(hidden_states)
|
|
v = self.v_proj(hidden_states)
|
|
# TODO
|
|
attn_output = None
|
|
output = self.out_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class OPTDecoderLayer(nn.Module):
|
|
|
|
def __init__(self, config: OPTConfig):
|
|
super().__init__()
|
|
self.embed_dim = config.hidden_size
|
|
self.self_attn = OPTAttention(
|
|
embed_dim=self.embed_dim,
|
|
num_heads=config.num_attention_heads,
|
|
bias=config.enable_bias,
|
|
)
|
|
self.do_layer_norm_before = config.do_layer_norm_before
|
|
assert config.activation_function == 'relu'
|
|
self.activation_fn = nn.ReLU()
|
|
|
|
self.self_attn_layer_norm = nn.LayerNorm(
|
|
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
|
|
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias)
|
|
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=config.enable_bias)
|
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
# Self Attention
|
|
residual = hidden_states
|
|
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
|
if self.do_layer_norm_before:
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
hidden_states = self.self_attn(hidden_states=hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
# 350m applies layer norm AFTER attention
|
|
if not self.do_layer_norm_before:
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
|
if self.do_layer_norm_before:
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
# 350m applies layer norm AFTER attention
|
|
if not self.do_layer_norm_before:
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class OPTPreTrainedModel(PreTrainedModel):
|
|
config_class = OPTConfig
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["OPTDecoderLayer"]
|
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
|
|
|
def _init_weights(self, module) -> None:
|
|
del module # unused
|
|
return
|
|
|
|
|
|
class OPTDecoder(OPTPreTrainedModel):
|
|
|
|
def __init__(self, config: OPTConfig):
|
|
super().__init__(config)
|
|
self.padding_idx = config.pad_token_id
|
|
self.max_target_positions = config.max_position_embeddings
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
|
|
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
|
|
|
|
if config.word_embed_proj_dim != config.hidden_size:
|
|
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
|
|
else:
|
|
self.project_out = None
|
|
|
|
if config.word_embed_proj_dim != config.hidden_size:
|
|
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
|
|
else:
|
|
self.project_in = None
|
|
|
|
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
|
|
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
|
# see https://github.com/facebookresearch/metaseq/pull/164
|
|
if config.do_layer_norm_before and not config._remove_final_layer_norm:
|
|
self.final_layer_norm = nn.LayerNorm(
|
|
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
|
|
)
|
|
else:
|
|
self.final_layer_norm = None
|
|
|
|
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
positions: torch.LongTensor,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
pos_embeds = self.embed_positions(positions)
|
|
pos_embeds = None
|
|
if self.project_in is not None:
|
|
inputs_embeds = self.project_in(inputs_embeds)
|
|
hidden_states = inputs_embeds + pos_embeds
|
|
|
|
for layer in self.layers:
|
|
hidden_states = layer(hidden_states)
|
|
|
|
if self.final_layer_norm is not None:
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
if self.project_out is not None:
|
|
hidden_states = self.project_out(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class OPTModel(OPTPreTrainedModel):
|
|
|
|
def __init__(self, config: OPTConfig):
|
|
super().__init__(config)
|
|
self.decoder = OPTDecoder(config)
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
positions: torch.LongTensor,
|
|
) -> torch.Tensor:
|
|
return self.decoder(input_ids, positions)
|
|
|
|
|
|
class OPTForCausalLM(OPTPreTrainedModel):
|
|
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = OPTModel(config)
|
|
|
|
# the lm_head weight is automatically tied to the embed tokens weight
|
|
self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
positions: torch.LongTensor,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model.decoder(input_ids, positions)
|
|
logits = self.lm_head(hidden_states).contiguous()
|
|
return logits
|