vllm/docs/source/index.rst
2023-06-19 19:58:23 -07:00

61 lines
1.7 KiB
ReStructuredText

Welcome to vLLM!
================
.. figure:: ./assets/logos/vllm-logo-text-light.png
:width: 60%
:align: center
:alt: vLLM
:class: no-scaled-link
.. raw:: html
<p style="text-align:center">
<strong>Easy, fast, and cheap LLM serving for everyone
</strong>
</p>
<p style="text-align:center">
<a class="github-button" href="https://github.com/WoosukKwon/vllm" data-show-count="true" data-size="large" aria-label="Star skypilot-org/skypilot on GitHub">Star</a>
<a class="github-button" href="https://github.com/WoosukKwon/vllm/subscription" data-icon="octicon-eye" data-size="large" aria-label="Watch skypilot-org/skypilot on GitHub">Watch</a>
<a class="github-button" href="https://github.com/WoosukKwon/vllm/fork" data-icon="octicon-repo-forked" data-size="large" aria-label="Fork skypilot-org/skypilot on GitHub">Fork</a>
</p>
vLLM is a fast and easy-to-use library for LLM inference and serving.
vLLM is fast with:
* State-of-the-art serving throughput
* Efficient management of attention key and value memory with **PagedAttention**
* Dynamic batching of incoming requests
* Optimized CUDA kernels
vLLM is flexible and easy to use with:
* Seamless integration with popular HuggingFace models
* High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
* Tensor parallelism support for distributed inference
* Streaming outputs
* OpenAI-compatible API server
For more information, please refer to our `blog post <>`_.
Documentation
-------------
.. toctree::
:maxdepth: 1
:caption: Getting Started
getting_started/installation
getting_started/quickstart
.. toctree::
:maxdepth: 1
:caption: Models
models/supported_models
models/adding_model