
Since #4335 was merged, I've noticed that the definition of ServerRunner in the tests is the same as in the test for OpenAI API. I have moved the class to the test utilities to avoid code duplication. (Although it only has been repeated twice so far, I will add another similar test suite in #4200 which would duplicate the code a third time) Also, I have moved the test utilities file (test_utils.py) to under the test directory (tests/utils.py), since none of its code is actually used in the main package. Note that I have added __init__.py to each test subpackage and updated the ray.init() call in the test utilities file in order to relative import tests/utils.py.
62 lines
1.9 KiB
Python
62 lines
1.9 KiB
Python
"""Compare the outputs of HF and distributed vLLM when using greedy sampling.
|
|
vLLM will allocate all the available memory, so we need to run the tests one
|
|
by one. The solution is to pass arguments (model name) by environment
|
|
variables.
|
|
Run:
|
|
```sh
|
|
cd $VLLM_PATH/tests
|
|
|
|
TEST_DIST_MODEL=facebook/opt-125m pytest \
|
|
distributed/test_basic_distributed_correctness.py
|
|
TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf \
|
|
distributed/test_basic_distributed_correctness.py
|
|
```
|
|
"""
|
|
import os
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
MODELS = [
|
|
os.environ["TEST_DIST_MODEL"],
|
|
]
|
|
VLLM_ATTENTION_BACKEND = "VLLM_ATTENTION_BACKEND"
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2,
|
|
reason="Need at least 2 GPUs to run the test.")
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [5])
|
|
def test_models(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
) -> None:
|
|
enforce_eager = False
|
|
backend_by_env_var = os.getenv(VLLM_ATTENTION_BACKEND)
|
|
if backend_by_env_var == "FLASHINFER":
|
|
enforce_eager = True
|
|
|
|
hf_model = hf_runner(model, dtype=dtype)
|
|
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
|
del hf_model
|
|
|
|
vllm_model = vllm_runner(model,
|
|
dtype=dtype,
|
|
tensor_parallel_size=2,
|
|
enforce_eager=enforce_eager)
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
del vllm_model
|
|
|
|
for i in range(len(example_prompts)):
|
|
hf_output_ids, hf_output_str = hf_outputs[i]
|
|
vllm_output_ids, vllm_output_str = vllm_outputs[i]
|
|
assert hf_output_str == vllm_output_str, (
|
|
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
|
|
assert hf_output_ids == vllm_output_ids, (
|
|
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
|