160 lines
5.9 KiB
Python
160 lines
5.9 KiB
Python
import multiprocessing
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import vllm.distributed.device_communicators.pynccl_utils as pynccl_utils
|
|
from vllm.distributed.communication_op import tensor_model_parallel_all_reduce
|
|
from vllm.distributed.device_communicators.pynccl import (NCCLCommunicator,
|
|
ncclGetUniqueId)
|
|
from vllm.distributed.parallel_state import (
|
|
ensure_model_parallel_initialized, get_tensor_model_parallel_cpu_group,
|
|
init_distributed_environment, with_pynccl_for_all_reduce)
|
|
from vllm.utils import update_environment_variables
|
|
|
|
|
|
def distributed_run(fn, world_size):
|
|
number_of_processes = world_size
|
|
processes = []
|
|
for i in range(number_of_processes):
|
|
env = {}
|
|
env['RANK'] = str(i)
|
|
env['LOCAL_RANK'] = str(i)
|
|
env['WORLD_SIZE'] = str(number_of_processes)
|
|
env['LOCAL_WORLD_SIZE'] = str(number_of_processes)
|
|
env['MASTER_ADDR'] = 'localhost'
|
|
env['MASTER_PORT'] = '12345'
|
|
p = multiprocessing.Process(target=fn, args=(env, ))
|
|
processes.append(p)
|
|
p.start()
|
|
|
|
for p in processes:
|
|
p.join()
|
|
|
|
for p in processes:
|
|
assert p.exitcode == 0
|
|
|
|
|
|
def worker_fn_wrapper(fn):
|
|
# `multiprocessing.Process` cannot accept environment variables directly
|
|
# so we need to pass the environment variables as arguments
|
|
# and update the environment variables in the function
|
|
def wrapped_fn(env):
|
|
update_environment_variables(env)
|
|
init_distributed_environment()
|
|
fn()
|
|
|
|
return wrapped_fn
|
|
|
|
|
|
@worker_fn_wrapper
|
|
def worker_fn():
|
|
comm = NCCLCommunicator()
|
|
tensor = torch.ones(16, 1024, 1024, dtype=torch.float32).cuda(comm.rank)
|
|
comm.all_reduce(tensor)
|
|
result = tensor.mean().cpu().item()
|
|
assert result == comm.world_size
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2,
|
|
reason="Need at least 2 GPUs to run the test.")
|
|
def test_pynccl():
|
|
distributed_run(worker_fn, 2)
|
|
|
|
|
|
@worker_fn_wrapper
|
|
def multiple_tp_worker_fn():
|
|
device = torch.device(f"cuda:{torch.distributed.get_rank()}")
|
|
groups = [
|
|
torch.distributed.new_group(ranks=[0, 1], backend="gloo"),
|
|
torch.distributed.new_group(ranks=[2, 3], backend="gloo")
|
|
]
|
|
group = groups[0] if torch.distributed.get_rank() in [0, 1] else groups[1]
|
|
comm = NCCLCommunicator(group=group, device=device)
|
|
tensor = torch.ones(16, 1024, 1024, dtype=torch.float32, device=device)
|
|
# two groups can communicate independently
|
|
if torch.distributed.get_rank() in [0, 1]:
|
|
comm.all_reduce(tensor)
|
|
comm.all_reduce(tensor)
|
|
result = tensor.mean().cpu().item()
|
|
assert result == 4
|
|
else:
|
|
comm.all_reduce(tensor)
|
|
result = tensor.mean().cpu().item()
|
|
assert result == 2
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 4,
|
|
reason="Need at least 4 GPUs to run the test.")
|
|
def test_pynccl_multiple_tp():
|
|
# this tests pynccl for multiple tp groups, in a standalone way
|
|
# i.e. call `comm.all_reduce` directly
|
|
distributed_run(multiple_tp_worker_fn, 4)
|
|
|
|
|
|
@worker_fn_wrapper
|
|
def multiple_tp_with_vllm_worker_fn():
|
|
device = torch.device(f"cuda:{torch.distributed.get_rank()}")
|
|
torch.cuda.set_device(torch.distributed.get_rank())
|
|
ensure_model_parallel_initialized(2, 2)
|
|
pynccl_utils.init_process_group(
|
|
group=get_tensor_model_parallel_cpu_group())
|
|
tensor = torch.ones(16, 1024, 1024, dtype=torch.float32, device=device)
|
|
with with_pynccl_for_all_reduce():
|
|
# two tp groups can communicate independently
|
|
if torch.distributed.get_rank() in [0, 1]:
|
|
tensor = tensor_model_parallel_all_reduce(tensor)
|
|
tensor = tensor_model_parallel_all_reduce(tensor)
|
|
result = tensor.mean().cpu().item()
|
|
assert result == 4
|
|
else:
|
|
tensor = tensor_model_parallel_all_reduce(tensor)
|
|
result = tensor.mean().cpu().item()
|
|
assert result == 2
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 4,
|
|
reason="Need at least 4 GPUs to run the test.")
|
|
def test_pynccl_multiple_tp_with_vllm():
|
|
# this tests pynccl for multiple tp groups, together with vllm
|
|
# i.e. call `tensor_model_parallel_all_reduce`
|
|
distributed_run(multiple_tp_with_vllm_worker_fn, 4)
|
|
|
|
|
|
@worker_fn_wrapper
|
|
def worker_fn_with_cudagraph():
|
|
with torch.no_grad():
|
|
graph = torch.cuda.CUDAGraph()
|
|
comm = NCCLCommunicator()
|
|
# run something in the default stream to initialize torch engine
|
|
a = torch.ones((4, 4), device=f'cuda:{comm.rank}')
|
|
torch.cuda.synchronize()
|
|
with torch.cuda.graph(graph, stream=comm.stream):
|
|
# operation during the graph capture is recorded but not executed
|
|
# see https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#creating-a-graph-using-stream-capture # noqa
|
|
comm.all_reduce(a)
|
|
comm.stream.synchronize()
|
|
assert a.mean().cpu().item() == comm.world_size**0
|
|
graph.replay()
|
|
comm.stream.synchronize()
|
|
assert a.mean().cpu().item() == comm.world_size**1
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2,
|
|
reason="Need at least 2 GPUs to run the test.")
|
|
def test_pynccl_with_cudagraph():
|
|
distributed_run(worker_fn_with_cudagraph, 2)
|
|
|
|
|
|
def test_ncclGetUniqueId():
|
|
unique_id = ncclGetUniqueId()
|
|
# `list(unique_id.internal)` is something like this:
|
|
# [34, -16, 23, 83, 109, -19, 59, 95, 2, 0, -86, 55, 10, -128, 0, 29, 0,
|
|
# 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
# 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
# 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
# 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
# 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
|
# as long as the function doesn't raise an exception, we're good
|
|
assert unique_id is not None
|