
Signed-off-by: Isotr0py <2037008807@qq.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
428 lines
16 KiB
Python
428 lines
16 KiB
Python
"""
|
|
WARNING: This test runs in both single-node (4 GPUs) and multi-node
|
|
(2 node with 2 GPUs each) modes. If the test only uses 2 GPUs, it is
|
|
important to set the distributed backend to "mp" to avoid Ray scheduling
|
|
all workers in a node other than the head node, which can cause the test
|
|
to fail.
|
|
"""
|
|
import os
|
|
from dataclasses import dataclass
|
|
from typing import List, Literal, NamedTuple, Optional
|
|
|
|
import pytest
|
|
|
|
from vllm.config import TaskOption
|
|
from vllm.logger import init_logger
|
|
|
|
from ..utils import compare_two_settings, fork_new_process_for_each_test
|
|
|
|
logger = init_logger("test_pipeline_parallel")
|
|
|
|
VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"
|
|
|
|
|
|
class ParallelSetup(NamedTuple):
|
|
tp_size: int
|
|
pp_size: int
|
|
eager_mode: bool
|
|
chunked_prefill: bool
|
|
|
|
|
|
class PPTestOptions(NamedTuple):
|
|
multi_node_only: bool
|
|
trust_remote_code: bool
|
|
tokenizer_mode: Optional[str]
|
|
load_format: Optional[str] = None
|
|
hf_overrides: Optional[str] = None
|
|
|
|
|
|
@dataclass
|
|
class PPTestSettings:
|
|
parallel_setups: List[ParallelSetup]
|
|
distributed_backends: List[str]
|
|
task: TaskOption
|
|
test_options: PPTestOptions
|
|
|
|
@staticmethod
|
|
def detailed(
|
|
*,
|
|
tp_base: int = 1,
|
|
pp_base: int = 2,
|
|
multi_node_only: bool = False,
|
|
task: TaskOption = "auto",
|
|
trust_remote_code: bool = False,
|
|
tokenizer_mode: Optional[str] = None,
|
|
load_format: Optional[str] = None,
|
|
hf_overrides: Optional[str] = None,
|
|
):
|
|
return PPTestSettings(
|
|
parallel_setups=[
|
|
ParallelSetup(tp_size=tp_base,
|
|
pp_size=pp_base,
|
|
eager_mode=False,
|
|
chunked_prefill=False),
|
|
ParallelSetup(tp_size=tp_base,
|
|
pp_size=2 * pp_base,
|
|
eager_mode=False,
|
|
chunked_prefill=True),
|
|
ParallelSetup(tp_size=tp_base,
|
|
pp_size=2 * pp_base,
|
|
eager_mode=True,
|
|
chunked_prefill=False),
|
|
ParallelSetup(tp_size=2 * tp_base,
|
|
pp_size=pp_base,
|
|
eager_mode=False,
|
|
chunked_prefill=True),
|
|
ParallelSetup(tp_size=2 * tp_base,
|
|
pp_size=pp_base,
|
|
eager_mode=True,
|
|
chunked_prefill=False),
|
|
],
|
|
distributed_backends=["mp", "ray"],
|
|
task=task,
|
|
test_options=PPTestOptions(multi_node_only=multi_node_only,
|
|
trust_remote_code=trust_remote_code,
|
|
tokenizer_mode=tokenizer_mode,
|
|
load_format=load_format,
|
|
hf_overrides=hf_overrides),
|
|
)
|
|
|
|
@staticmethod
|
|
def fast(
|
|
*,
|
|
tp_base: int = 1,
|
|
pp_base: int = 2,
|
|
task: TaskOption = "auto",
|
|
multi_node_only: bool = False,
|
|
trust_remote_code: bool = False,
|
|
tokenizer_mode: Optional[str] = None,
|
|
load_format: Optional[str] = None,
|
|
hf_overrides: Optional[str] = None,
|
|
):
|
|
return PPTestSettings(
|
|
parallel_setups=[
|
|
ParallelSetup(tp_size=tp_base,
|
|
pp_size=pp_base,
|
|
eager_mode=True,
|
|
chunked_prefill=False),
|
|
],
|
|
distributed_backends=["mp"],
|
|
task=task,
|
|
test_options=PPTestOptions(multi_node_only=multi_node_only,
|
|
trust_remote_code=trust_remote_code,
|
|
tokenizer_mode=tokenizer_mode,
|
|
load_format=load_format,
|
|
hf_overrides=hf_overrides),
|
|
)
|
|
|
|
def iter_params(self, model_name: str):
|
|
opts = self.test_options
|
|
|
|
for parallel_setup in self.parallel_setups:
|
|
for distributed_backend in self.distributed_backends:
|
|
yield (model_name, parallel_setup, distributed_backend,
|
|
self.task, opts)
|
|
|
|
|
|
# NOTE: You can adjust tp_base and/or pp_base locally to fit the model in GPU
|
|
# The values displayed here are only a rough indicator of the size of the model
|
|
|
|
# yapf: disable
|
|
TEXT_GENERATION_MODELS = {
|
|
# [Decoder-only]
|
|
# Uses Llama
|
|
# "BAAI/AquilaChat-7B": PPTestSettings.fast(),
|
|
"Snowflake/snowflake-arctic-instruct": PPTestSettings.fast(tp_base=8, trust_remote_code=True), # noqa: E501
|
|
"baichuan-inc/Baichuan-7B": PPTestSettings.fast(trust_remote_code=True),
|
|
"baichuan-inc/Baichuan2-13B-Chat": PPTestSettings.fast(trust_remote_code=True), # noqa: E501
|
|
"bigscience/bloomz-1b1": PPTestSettings.fast(),
|
|
"THUDM/chatglm3-6b": PPTestSettings.fast(trust_remote_code=True),
|
|
"CohereForAI/c4ai-command-r-v01": PPTestSettings.fast(tp_base=2, trust_remote_code=True), # noqa: E501
|
|
"databricks/dbrx-instruct": PPTestSettings.fast(tp_base=8),
|
|
"Deci/DeciLM-7B-instruct": PPTestSettings.fast(trust_remote_code=True),
|
|
"deepseek-ai/deepseek-llm-7b-chat": PPTestSettings.fast(),
|
|
"deepseek-ai/DeepSeek-V2-Lite-Chat": PPTestSettings.fast(trust_remote_code=True), # noqa: E501
|
|
"LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct": PPTestSettings.fast(),
|
|
"tiiuae/falcon-7b": PPTestSettings.fast(),
|
|
"google/gemma-2b": PPTestSettings.fast(),
|
|
"google/gemma-2-9b": PPTestSettings.fast(),
|
|
"gpt2": PPTestSettings.fast(),
|
|
"bigcode/starcoder": PPTestSettings.fast(),
|
|
"EleutherAI/gpt-j-6b": PPTestSettings.fast(),
|
|
"EleutherAI/pythia-12b": PPTestSettings.fast(),
|
|
"ibm/PowerLM-3b": PPTestSettings.fast(),
|
|
"ibm/PowerMoE-3b": PPTestSettings.fast(),
|
|
# Uses Llama
|
|
# "internlm/internlm-chat-7b": PPTestSettings.fast(),
|
|
"internlm/internlm2-chat-7b": PPTestSettings.fast(trust_remote_code=True),
|
|
"inceptionai/jais-13b-chat": PPTestSettings.fast(),
|
|
"ai21labs/Jamba-tiny-dev": PPTestSettings.fast(),
|
|
"meta-llama/Meta-Llama-3-8B": PPTestSettings.detailed(),
|
|
"openbmb/MiniCPM-2B-sft-bf16": PPTestSettings.fast(trust_remote_code=True),
|
|
"openbmb/MiniCPM3-4B": PPTestSettings.fast(trust_remote_code=True),
|
|
# Uses Llama
|
|
# "mistralai/Mistral-7B-Instruct-v0.1": PPTestSettings.fast(),
|
|
"state-spaces/mamba-130m-hf": PPTestSettings.fast(),
|
|
"mistralai/Mixtral-8x7B-Instruct-v0.1": PPTestSettings.fast(tp_base=4),
|
|
"mosaicml/mpt-7b": PPTestSettings.fast(),
|
|
"nvidia/Minitron-8B-Base": PPTestSettings.fast(),
|
|
"allenai/OLMo-1B-hf": PPTestSettings.fast(),
|
|
"shanearora/OLMo-7B-1124-hf": PPTestSettings.fast(),
|
|
"allenai/OLMoE-1B-7B-0924-Instruct": PPTestSettings.fast(),
|
|
"facebook/opt-iml-max-1.3b": PPTestSettings.fast(),
|
|
"OrionStarAI/Orion-14B-Chat": PPTestSettings.fast(trust_remote_code=True),
|
|
"adept/persimmon-8b-chat": PPTestSettings.fast(),
|
|
"microsoft/phi-2": PPTestSettings.fast(),
|
|
"microsoft/Phi-3-small-8k-instruct": PPTestSettings.fast(trust_remote_code=True), # noqa: E501
|
|
"microsoft/Phi-3.5-MoE-instruct": PPTestSettings.detailed(trust_remote_code=True, multi_node_only=True, load_format="dummy", hf_overrides='{"num_hidden_layers": 4, "hidden_size": 512, "intermediate_size": 800, "num_attention_heads": 4, "num_key_value_heads": 1}'), # noqa: E501
|
|
"Qwen/Qwen-7B-Chat": PPTestSettings.fast(trust_remote_code=True),
|
|
"Qwen/Qwen2-7B-Instruct": PPTestSettings.fast(),
|
|
"Qwen/Qwen1.5-MoE-A2.7B-Chat": PPTestSettings.fast(),
|
|
"stabilityai/stablelm-3b-4e1t": PPTestSettings.fast(),
|
|
"bigcode/starcoder2-3b": PPTestSettings.fast(),
|
|
"upstage/solar-pro-preview-instruct": PPTestSettings.fast(tp_base=2),
|
|
# FIXME: Cannot load tokenizer in latest transformers version.
|
|
# Need to use tokenizer from `meta-llama/Llama-2-7b-chat-hf`
|
|
# "xverse/XVERSE-7B-Chat": PPTestSettings.fast(trust_remote_code=True),
|
|
# [Encoder-only]
|
|
# TODO: Implement PP
|
|
# "facebook/bart-base": PPTestSettings.fast(),
|
|
}
|
|
|
|
EMBEDDING_MODELS = { # type: ignore[var-annotated]
|
|
# [Text-only]
|
|
"intfloat/e5-mistral-7b-instruct": PPTestSettings.fast(),
|
|
"BAAI/bge-multilingual-gemma2": PPTestSettings.fast(),
|
|
"Qwen/Qwen2.5-Math-RM-72B": PPTestSettings.fast(tp_base=4, trust_remote_code=True), # noqa: E501
|
|
}
|
|
|
|
MULTIMODAL_MODELS = {
|
|
# [Decoder-only]
|
|
"Salesforce/blip2-opt-2.7b": PPTestSettings.fast(),
|
|
"facebook/chameleon-7b": PPTestSettings.fast(),
|
|
"adept/fuyu-8b": PPTestSettings.fast(),
|
|
"THUDM/glm-4v-9b": PPTestSettings.fast(trust_remote_code=True),
|
|
"OpenGVLab/InternVL2-1B": PPTestSettings.fast(trust_remote_code=True),
|
|
"llava-hf/llava-1.5-7b-hf": PPTestSettings.fast(),
|
|
"llava-hf/llava-v1.6-mistral-7b-hf": PPTestSettings.fast(),
|
|
"llava-hf/LLaVA-NeXT-Video-7B-hf": PPTestSettings.fast(),
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf": PPTestSettings.fast(),
|
|
"openbmb/MiniCPM-Llama3-V-2_5": PPTestSettings.fast(trust_remote_code=True),
|
|
"allenai/Molmo-7B-D-0924": PPTestSettings.fast(trust_remote_code=True),
|
|
"microsoft/Phi-3-vision-128k-instruct": PPTestSettings.fast(trust_remote_code=True), # noqa: E501
|
|
"mistralai/Pixtral-12B-2409": PPTestSettings.fast(tp_base=2, tokenizer_mode="mistral"), # noqa: E501
|
|
"Qwen/Qwen-VL-Chat": PPTestSettings.fast(trust_remote_code=True),
|
|
"Qwen/Qwen2-Audio-7B-Instruct": PPTestSettings.fast(),
|
|
"Qwen/Qwen2-VL-2B-Instruct": PPTestSettings.fast(),
|
|
"fixie-ai/ultravox-v0_3": PPTestSettings.fast(trust_remote_code=True),
|
|
# [Encoder-decoder]
|
|
# TODO: Implement PP
|
|
# "meta-llama/Llama-3.2-11B-Vision-Instruct": PPTestSettings.fast(),
|
|
}
|
|
# yapf: enable
|
|
|
|
# NOTE: You can update this on your local machine to run specific tests
|
|
TEST_MODELS = [
|
|
# [LANGUAGE GENERATION]
|
|
"microsoft/Phi-3.5-MoE-instruct",
|
|
"meta-llama/Meta-Llama-3-8B",
|
|
"ibm/PowerLM-3b",
|
|
# [LANGUAGE EMBEDDING]
|
|
"intfloat/e5-mistral-7b-instruct",
|
|
"BAAI/bge-multilingual-gemma2",
|
|
# [MULTIMODAL GENERATION]
|
|
"OpenGVLab/InternVL2-1B",
|
|
"microsoft/Phi-3-vision-128k-instruct",
|
|
"fixie-ai/ultravox-v0_3",
|
|
# [LANGUAGE GENERATION - HYBRID ARCH]
|
|
"ai21labs/Jamba-tiny-dev",
|
|
]
|
|
|
|
|
|
def _compare_tp(
|
|
model_name: str,
|
|
parallel_setup: ParallelSetup,
|
|
distributed_backend: str,
|
|
task: TaskOption,
|
|
test_options: PPTestOptions,
|
|
num_gpus_available: int,
|
|
*,
|
|
method: Literal["generate", "encode"],
|
|
):
|
|
(
|
|
tp_size,
|
|
pp_size,
|
|
eager_mode,
|
|
chunked_prefill,
|
|
) = parallel_setup
|
|
(
|
|
multi_node_only,
|
|
trust_remote_code,
|
|
tokenizer_mode,
|
|
load_format,
|
|
hf_overrides,
|
|
) = test_options
|
|
|
|
if num_gpus_available < tp_size * pp_size:
|
|
pytest.skip(f"Need at least {tp_size} x {pp_size} GPUs")
|
|
if VLLM_MULTI_NODE and distributed_backend == "mp":
|
|
pytest.skip("Skipping multi-node pipeline parallel test for "
|
|
"multiprocessing distributed backend")
|
|
if multi_node_only and not VLLM_MULTI_NODE:
|
|
pytest.skip("Not in multi-node setting")
|
|
|
|
common_args = [
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
"float16",
|
|
"--max-model-len",
|
|
"2048",
|
|
"--max-num-seqs",
|
|
"8",
|
|
]
|
|
if chunked_prefill:
|
|
common_args.append("--enable-chunked-prefill")
|
|
if eager_mode:
|
|
common_args.append("--enforce-eager")
|
|
if task != "auto":
|
|
common_args.extend(["--task", task])
|
|
if trust_remote_code:
|
|
common_args.append("--trust-remote-code")
|
|
if tokenizer_mode:
|
|
common_args.extend(["--tokenizer-mode", tokenizer_mode])
|
|
if load_format:
|
|
common_args.extend(["--load-format", load_format])
|
|
if hf_overrides:
|
|
common_args.extend(["--hf-overrides", hf_overrides])
|
|
|
|
if (distributed_backend == "ray" and tp_size == 2 and pp_size == 2
|
|
and chunked_prefill):
|
|
# Test Ray ADAG for a subset of the tests
|
|
pp_env = {
|
|
"VLLM_USE_RAY_COMPILED_DAG": "1",
|
|
"VLLM_USE_RAY_SPMD_WORKER": "1",
|
|
"VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL": "1",
|
|
}
|
|
# Temporary. Currently when zeromq + SPMD is used, it does not properly
|
|
# terminate because of aDAG issue.
|
|
common_args.append("--disable-frontend-multiprocessing")
|
|
else:
|
|
pp_env = None
|
|
|
|
pp_args = [
|
|
*common_args,
|
|
"--pipeline-parallel-size",
|
|
str(pp_size),
|
|
"--tensor-parallel-size",
|
|
str(tp_size),
|
|
"--distributed-executor-backend",
|
|
distributed_backend,
|
|
]
|
|
|
|
# compare without pipeline parallelism
|
|
# NOTE: use mp backend for TP
|
|
# PP tests might involve multiple nodes, and ray might
|
|
# schedule all workers in a node other than the head node,
|
|
# which can cause the test to fail.
|
|
tp_args = [
|
|
*common_args,
|
|
"--tensor-parallel-size",
|
|
str(tp_size),
|
|
"--distributed-executor-backend",
|
|
"mp",
|
|
]
|
|
|
|
try:
|
|
compare_two_settings(model_name,
|
|
pp_args,
|
|
tp_args,
|
|
pp_env,
|
|
method=method)
|
|
except Exception:
|
|
if pp_env is None:
|
|
raise
|
|
else:
|
|
# Ray ADAG tests are flaky, so we don't want to fail the test
|
|
logger.exception("Ray ADAG tests failed")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("model_name", "parallel_setup", "distributed_backend", "task",
|
|
"test_options"),
|
|
[
|
|
params for model_name, settings in TEXT_GENERATION_MODELS.items()
|
|
for params in settings.iter_params(model_name)
|
|
if model_name in TEST_MODELS
|
|
],
|
|
)
|
|
@fork_new_process_for_each_test
|
|
def test_tp_language_generation(
|
|
model_name: str,
|
|
parallel_setup: ParallelSetup,
|
|
distributed_backend: str,
|
|
task: TaskOption,
|
|
test_options: PPTestOptions,
|
|
num_gpus_available,
|
|
):
|
|
_compare_tp(model_name,
|
|
parallel_setup,
|
|
distributed_backend,
|
|
task,
|
|
test_options,
|
|
num_gpus_available,
|
|
method="generate")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("model_name", "parallel_setup", "distributed_backend", "task",
|
|
"test_options"),
|
|
[
|
|
params for model_name, settings in EMBEDDING_MODELS.items()
|
|
for params in settings.iter_params(model_name)
|
|
if model_name in TEST_MODELS
|
|
],
|
|
)
|
|
@fork_new_process_for_each_test
|
|
def test_tp_language_embedding(
|
|
model_name: str,
|
|
parallel_setup: ParallelSetup,
|
|
distributed_backend: str,
|
|
task: TaskOption,
|
|
test_options: PPTestOptions,
|
|
num_gpus_available,
|
|
):
|
|
_compare_tp(model_name,
|
|
parallel_setup,
|
|
distributed_backend,
|
|
task,
|
|
test_options,
|
|
num_gpus_available,
|
|
method="encode")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("model_name", "parallel_setup", "distributed_backend", "task",
|
|
"test_options"),
|
|
[
|
|
params for model_name, settings in MULTIMODAL_MODELS.items()
|
|
for params in settings.iter_params(model_name)
|
|
if model_name in TEST_MODELS
|
|
],
|
|
)
|
|
@fork_new_process_for_each_test
|
|
def test_tp_multimodal_generation(
|
|
model_name: str,
|
|
parallel_setup: ParallelSetup,
|
|
distributed_backend: str,
|
|
task: TaskOption,
|
|
test_options: PPTestOptions,
|
|
num_gpus_available,
|
|
):
|
|
_compare_tp(model_name,
|
|
parallel_setup,
|
|
distributed_backend,
|
|
task,
|
|
test_options,
|
|
num_gpus_available,
|
|
method="generate")
|