
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
166 lines
5.5 KiB
Python
166 lines
5.5 KiB
Python
import pathlib
|
|
from typing import List, Optional, Type
|
|
|
|
import pytest
|
|
|
|
from vllm.multimodal.utils import rescale_image_size
|
|
|
|
from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets
|
|
from .utils import check_logprobs_close
|
|
|
|
pytestmark = pytest.mark.vlm
|
|
|
|
text_only_models = [
|
|
"Qwen/Qwen-7B-Chat" # Has no visual component
|
|
]
|
|
|
|
multimodal_models = ["Qwen/Qwen-VL"]
|
|
|
|
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
|
|
"stop_sign":
|
|
"Picture 1: <img></img>\nWhat's the content of the image?: ",
|
|
"cherry_blossom":
|
|
"Picture 1: <img></img>\nWhat is the season?: ",
|
|
})
|
|
|
|
|
|
### Tests for multimodal Qwen models
|
|
def run_test(
|
|
tmp_path: pathlib.PosixPath,
|
|
hf_runner: Type[HfRunner],
|
|
vllm_runner: Type[VllmRunner],
|
|
image_assets: _ImageAssets,
|
|
model: str,
|
|
*,
|
|
size_factors: List[float],
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
tensor_parallel_size: int,
|
|
distributed_executor_backend: Optional[str] = None,
|
|
):
|
|
"""Inference result should be the same between hf and vllm.
|
|
|
|
All the image fixtures for the test is under tests/images.
|
|
For huggingface runner, we provide the PIL images as input.
|
|
For vllm runner, we provide MultiModalDataDict objects
|
|
and corresponding MultiModalConfig as input.
|
|
Note, the text input is also adjusted to abide by vllm contract.
|
|
The text output is sanitized to be able to compare with hf.
|
|
"""
|
|
images = [asset.pil_image for asset in image_assets]
|
|
|
|
# Export the images to a tempdir and substitute it into the hf prompt;
|
|
# the contents between <img>/</img> will be ignored by VLLM, but the
|
|
# transformers implementation for the visual transformer parses this to
|
|
# reload it in the forward call; the contents are treated as a URL or a
|
|
# local path.
|
|
for idx, asset in enumerate(image_assets):
|
|
image_tmp_path = tmp_path / f"{asset.name}.jpg"
|
|
asset.pil_image.save(image_tmp_path)
|
|
HF_IMAGE_PROMPTS[idx] = HF_IMAGE_PROMPTS[idx].replace(
|
|
"<img></img>", f"<img>{image_tmp_path}</img>")
|
|
|
|
inputs_per_image = [(
|
|
[prompt for _ in size_factors],
|
|
[rescale_image_size(image, factor) for factor in size_factors],
|
|
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
|
|
|
|
# NOTE: take care of the order. run vLLM first, and then run HF.
|
|
# vLLM needs a fresh new process without cuda initialization.
|
|
# if we run HF first, the cuda initialization will be done and it
|
|
# will hurt multiprocessing backend with fork method (the default method).
|
|
|
|
# max_model_len should be greater than image_feature_size
|
|
# Qwen encodes images into a fixed content size of 256
|
|
with vllm_runner(model,
|
|
max_model_len=300,
|
|
max_num_seqs=1,
|
|
dtype=dtype,
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
distributed_executor_backend=distributed_executor_backend,
|
|
enforce_eager=True) as vllm_model:
|
|
vllm_outputs_per_image = [
|
|
vllm_model.generate_greedy_logprobs(prompts,
|
|
max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
images=images)
|
|
for prompts, images in inputs_per_image
|
|
]
|
|
|
|
with hf_runner(model, dtype=dtype) as hf_model:
|
|
hf_outputs_per_image = [
|
|
hf_model.generate_greedy_logprobs_limit(prompts,
|
|
max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
images=images)
|
|
for prompts, images in inputs_per_image
|
|
]
|
|
|
|
for hf_outputs, vllm_outputs in zip(hf_outputs_per_image,
|
|
vllm_outputs_per_image):
|
|
|
|
check_logprobs_close(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("model", multimodal_models)
|
|
@pytest.mark.parametrize(
|
|
"size_factors",
|
|
[
|
|
# No image
|
|
[],
|
|
# Single-scale
|
|
[1.0],
|
|
# Single-scale, batched
|
|
[1.0, 1.0, 1.0],
|
|
# Multi-scale
|
|
[0.25, 0.5, 1.0],
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
@pytest.mark.parametrize("max_tokens", [8])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
def test_multimodal_models(tmp_path, hf_runner, vllm_runner, image_assets,
|
|
model, size_factors, dtype, max_tokens,
|
|
num_logprobs) -> None:
|
|
run_test(
|
|
tmp_path,
|
|
hf_runner,
|
|
vllm_runner,
|
|
image_assets,
|
|
model,
|
|
size_factors=size_factors,
|
|
dtype=dtype,
|
|
max_tokens=max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
tensor_parallel_size=1,
|
|
)
|
|
|
|
|
|
# Ensure that a text-only Qwen model can still be loaded and
|
|
# used for inference in VLLM without throwing.
|
|
@pytest.mark.parametrize("model", text_only_models)
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
@pytest.mark.parametrize("max_tokens", [32])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
def test_text_only_qwen_model_can_be_loaded_and_run(
|
|
vllm_runner: Type[VllmRunner],
|
|
example_prompts,
|
|
model: str,
|
|
*,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
):
|
|
with vllm_runner(model, dtype=dtype) as vllm_model:
|
|
vllm_model.generate_greedy_logprobs(
|
|
example_prompts,
|
|
max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
)
|