51 lines
1.9 KiB
Python
51 lines
1.9 KiB
Python
from typing import List, Dict, Tuple
|
|
|
|
import torch
|
|
|
|
from cacheflow.sampling_params import SamplingParams
|
|
|
|
|
|
class InputMetadata:
|
|
|
|
def __init__(
|
|
self,
|
|
seq_groups: List[Tuple[List[int], SamplingParams]],
|
|
seq_logprobs: Dict[int, float], # Seq id -> cumulative logprobs.
|
|
prompt_lens: List[int],
|
|
slot_mapping: torch.Tensor,
|
|
context_lens: torch.Tensor,
|
|
max_context_len: int,
|
|
block_tables: torch.Tensor,
|
|
) -> None:
|
|
self.seq_groups = seq_groups
|
|
self.seq_logprobs = seq_logprobs
|
|
self.prompt_lens = prompt_lens
|
|
self.slot_mapping = slot_mapping
|
|
self.context_lens = context_lens
|
|
self.max_context_len = max_context_len
|
|
self.block_tables = block_tables
|
|
|
|
self.num_prompts = len(prompt_lens)
|
|
self.num_prompt_tokens = sum(prompt_lens)
|
|
self.num_generation_tokens = context_lens.shape[0]
|
|
self.num_valid_tokens = slot_mapping.shape[0]
|
|
if block_tables.numel() > 0:
|
|
self.max_num_blocks_per_seq = block_tables.shape[1]
|
|
else:
|
|
self.max_num_blocks_per_seq = 0
|
|
assert block_tables.shape[0] == self.num_generation_tokens
|
|
assert context_lens.shape[0] == self.num_generation_tokens
|
|
|
|
def __repr__(self) -> str:
|
|
return (f'InputMetadata('
|
|
f'num_prompts={self.num_prompts}, '
|
|
f'num_prompt_tokens={self.num_prompt_tokens}, '
|
|
f'num_generation_tokens={self.num_generation_tokens}, '
|
|
f'num_valid_tokens={self.num_valid_tokens}, '
|
|
f'max_num_blocks_per_seq={self.max_num_blocks_per_seq}, '
|
|
f'max_context_len={self.max_context_len}), '
|
|
f'prompt_lens={self.prompt_lens}, '
|
|
f'slot_mapping={self.slot_mapping}, '
|
|
f'context_lens={self.context_lens}, '
|
|
f'block_tables={self.block_tables})')
|