vllm/docs/source/getting_started/quickstart.rst
Russell Bryant 098f94de42
[CI/Build] Drop Python 3.8 support (#10038)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-06 14:31:01 +00:00

182 lines
7.5 KiB
ReStructuredText

.. _quickstart:
==========
Quickstart
==========
This guide will help you quickly get started with vLLM to:
* :ref:`Run offline batched inference <offline_batched_inference>`
* :ref:`Run OpenAI-compatible inference <openai_compatible_server>`
Prerequisites
--------------
- OS: Linux
- Python: 3.9 -- 3.12
- GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, H100, etc.)
Installation
--------------
You can install vLLM using pip. It's recommended to use `conda <https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html>`_ to create and manage Python environments.
.. code-block:: console
$ conda create -n myenv python=3.10 -y
$ conda activate myenv
$ pip install vllm
Please refer to the :ref:`installation documentation <installation>` for more details on installing vLLM.
.. _offline_batched_inference:
Offline Batched Inference
-------------------------
With vLLM installed, you can start generating texts for list of input prompts (i.e. offline batch inferencing). The example script for this section can be found `here <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py>`__.
The first line of this example imports the classes :class:`~vllm.LLM` and :class:`~vllm.SamplingParams`:
- :class:`~vllm.LLM` is the main class for running offline inference with vLLM engine.
- :class:`~vllm.SamplingParams` specifies the parameters for the sampling process.
.. code-block:: python
from vllm import LLM, SamplingParams
The next section defines a list of input prompts and sampling parameters for text generation. The `sampling temperature <https://arxiv.org/html/2402.05201v1>`_ is set to ``0.8`` and the `nucleus sampling probability <https://en.wikipedia.org/wiki/Top-p_sampling>`_ is set to ``0.95``. You can find more information about the sampling parameters `here <https://docs.vllm.ai/en/stable/dev/sampling_params.html>`__.
.. code-block:: python
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
The :class:`~vllm.LLM` class initializes vLLM's engine and the `OPT-125M model <https://arxiv.org/abs/2205.01068>`_ for offline inference. The list of supported models can be found :ref:`here <supported_models>`.
.. code-block:: python
llm = LLM(model="facebook/opt-125m")
.. note::
By default, vLLM downloads models from `HuggingFace <https://huggingface.co/>`_. If you would like to use models from `ModelScope <https://www.modelscope.cn>`_, set the environment variable ``VLLM_USE_MODELSCOPE`` before initializing the engine.
Now, the fun part! The outputs are generated using ``llm.generate``. It adds the input prompts to the vLLM engine's waiting queue and executes the vLLM engine to generate the outputs with high throughput. The outputs are returned as a list of ``RequestOutput`` objects, which include all of the output tokens.
.. code-block:: python
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
.. _openai_compatible_server:
OpenAI-Compatible Server
------------------------
vLLM can be deployed as a server that implements the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API.
By default, it starts the server at ``http://localhost:8000``. You can specify the address with ``--host`` and ``--port`` arguments. The server currently hosts one model at a time and implements endpoints such as `list models <https://platform.openai.com/docs/api-reference/models/list>`_, `create chat completion <https://platform.openai.com/docs/api-reference/chat/completions/create>`_, and `create completion <https://platform.openai.com/docs/api-reference/completions/create>`_ endpoints.
Run the following command to start the vLLM server with the `Qwen2.5-1.5B-Instruct <https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct>`_ model:
.. code-block:: console
$ vllm serve Qwen/Qwen2.5-1.5B-Instruct
.. note::
By default, the server uses a predefined chat template stored in the tokenizer. You can learn about overriding it `here <https://github.com/vllm-project/vllm/blob/main/docs/source/serving/openai_compatible_server.md#chat-template>`__.
This server can be queried in the same format as OpenAI API. For example, to list the models:
.. code-block:: console
$ curl http://localhost:8000/v1/models
You can pass in the argument ``--api-key`` or environment variable ``VLLM_API_KEY`` to enable the server to check for API key in the header.
OpenAI Completions API with vLLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Once your server is started, you can query the model with input prompts:
.. code-block:: console
$ curl http://localhost:8000/v1/completions \
$ -H "Content-Type: application/json" \
$ -d '{
$ "model": "Qwen/Qwen2.5-1.5B-Instruct",
$ "prompt": "San Francisco is a",
$ "max_tokens": 7,
$ "temperature": 0
$ }'
Since this server is compatible with OpenAI API, you can use it as a drop-in replacement for any applications using OpenAI API. For example, another way to query the server is via the ``openai`` python package:
.. code-block:: python
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
completion = client.completions.create(model="Qwen/Qwen2.5-1.5B-Instruct",
prompt="San Francisco is a")
print("Completion result:", completion)
A more detailed client example can be found `here <https://github.com/vllm-project/vllm/blob/main/examples/openai_completion_client.py>`__.
OpenAI Chat Completions API with vLLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
vLLM is designed to also support the OpenAI Chat Completions API. The chat interface is a more dynamic, interactive way to communicate with the model, allowing back-and-forth exchanges that can be stored in the chat history. This is useful for tasks that require context or more detailed explanations.
You can use the `create chat completion <https://platform.openai.com/docs/api-reference/chat/completions/create>`_ endpoint to interact with the model:
.. code-block:: console
$ curl http://localhost:8000/v1/chat/completions \
$ -H "Content-Type: application/json" \
$ -d '{
$ "model": "Qwen/Qwen2.5-1.5B-Instruct",
$ "messages": [
$ {"role": "system", "content": "You are a helpful assistant."},
$ {"role": "user", "content": "Who won the world series in 2020?"}
$ ]
$ }'
Alternatively, you can use the ``openai`` python package:
.. code-block:: python
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
model="Qwen/Qwen2.5-1.5B-Instruct",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me a joke."},
]
)
print("Chat response:", chat_response)