2024-03-07 01:45:50 -08:00

125 lines
4.8 KiB
Python

"""Attention layer with Flash and PagedAttention."""
from typing import List, Optional
# NOTE(woosuk): This imports flash_attn under vllm/thirdparty_files/.
from flash_attn import flash_attn_func
import torch
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention.ops.paged_attn import (
PagedAttentionImpl)
class FlashAttentionBackend:
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: Optional[int] = None,
alibi_slopes: Optional[List[float]] = None,
sliding_window: Optional[int] = None,
) -> None:
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
self.sliding_window = sliding_window
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
suppored_head_sizes = PagedAttentionImpl.get_supported_head_sizes()
if head_size not in suppored_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by PagedAttention. "
f"Supported head sizes are: {suppored_head_sizes}.")
self.sliding_window = ((self.sliding_window, self.sliding_window) if
self.sliding_window is not None else (-1, -1))
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
key_cache: Optional[torch.Tensor],
value_cache: Optional[torch.Tensor],
input_metadata: InputMetadata,
) -> torch.Tensor:
"""Forward pass with FlashAttention and PagedAttention.
Args:
query: shape = [batch_size, seq_len, num_heads * head_size]
key: shape = [batch_size, seq_len, num_kv_heads * head_size]
value: shape = [batch_size, seq_len, num_kv_heads * head_size]
key_cache: shape = [num_blocks, num_kv_heads, head_size/x,
block_size, x]
value_cache: shape = [num_blocks, num_kv_heads, head_size,
block_size]
input_metadata: metadata for the inputs.
Returns:
shape = [batch_size, seq_len, num_heads * head_size]
"""
batch_size, seq_len, hidden_size = query.shape
# Reshape the query, key, and value tensors.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
# Reshape the keys and values and store them in the cache.
# If key_cache and value_cache are not provided, the new key and value
# vectors will not be cached. This happens during the initial memory
# profiling run.
if key_cache is not None and value_cache is not None:
PagedAttentionImpl.reshape_and_cache(key, value, key_cache,
value_cache, input_metadata)
if input_metadata.is_prompt:
# Prompt run.
if (key_cache is None or value_cache is None
or input_metadata.block_tables.numel() == 0):
# normal attention
query = query.unflatten(0, (batch_size, seq_len))
key = key.unflatten(0, (batch_size, seq_len))
value = value.unflatten(0, (batch_size, seq_len))
output = flash_attn_func(
query,
key,
value,
softmax_scale=self.scale,
causal=True,
window_size=self.sliding_window,
alibi_slopes=self.alibi_slopes,
)
else:
# prefix-enabled attention
output = PagedAttentionImpl.forward_prefix(
query,
key,
value,
key_cache,
value_cache,
input_metadata,
self.num_heads,
self.num_kv_heads,
self.alibi_slopes,
)
else:
# Decoding run.
output = PagedAttentionImpl.forward_decode(
query,
key_cache,
value_cache,
input_metadata,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
)
# Reshape the output tensor.
return output.view(batch_size, seq_len, hidden_size)