Travis Johnson 2bcbae704c
[Bugfix] Fix edge-case crash when using chat with the Mistral Tekken Tokenizer (#10051)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-11-06 04:28:29 +00:00

183 lines
5.8 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""Compare the outputs of HF and vLLM for Mistral models using greedy sampling.
Run `pytest tests/models/test_mistral.py`.
"""
import pytest
from vllm import SamplingParams
from ...utils import check_logprobs_close
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.1",
]
MISTRAL_FORMAT_MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
# uses the v3-Tekken tokenizer
"mistralai/Ministral-8B-Instruct-2410",
# Mistral-Nemo is to big for CI, but passes locally
# "mistralai/Mistral-Nemo-Instruct-2407"
]
SAMPLING_PARAMS = SamplingParams(max_tokens=512, temperature=0.0, logprobs=5)
SYMBOLIC_LANG_PROMPTS = [
"勇敢な船乗りについての詩を書く", # japanese
"寫一首關於勇敢的水手的詩", # chinese
"ပုံပြင်လေးပြောပြပါ်:\n", # burmese
"Repeat the phrase 'URGENCY🌶':\nURGENCY🌶\nURGENCY🌶\n", # see https://github.com/vllm-project/vllm/pull/9625
]
# for function calling
TOOLS = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. 'San Francisco'"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}]
MSGS = [{
"role":
"user",
"content": ("Can you tell me what the temperate"
" will be in Dallas, in fahrenheit?")
}]
EXPECTED_FUNC_CALL = (
'[{"name": "get_current_weather", "arguments": '
'{"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}]')
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [64])
@pytest.mark.parametrize("num_logprobs", [5])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
# TODO(sang): Sliding window should be tested separately.
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)
with vllm_runner(model, dtype=dtype,
tokenizer_mode="mistral") as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("model", MISTRAL_FORMAT_MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [64])
@pytest.mark.parametrize("num_logprobs", [5])
def test_mistral_format(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
with vllm_runner(
model,
dtype=dtype,
tokenizer_mode="auto",
load_format="safetensors",
config_format="hf",
) as hf_format_model:
hf_format_outputs = hf_format_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
with vllm_runner(
model,
dtype=dtype,
tokenizer_mode="mistral",
load_format="mistral",
config_format="mistral",
) as mistral_format_model:
mistral_format_outputs = mistral_format_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=hf_format_outputs,
outputs_1_lst=mistral_format_outputs,
name_0="hf",
name_1="mistral",
)
@pytest.mark.parametrize("model", MISTRAL_FORMAT_MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
def test_mistral_symbolic_languages(
vllm_runner,
model: str,
dtype: str,
) -> None:
with vllm_runner(model,
dtype=dtype,
max_model_len=8192,
tokenizer_mode="mistral",
config_format="mistral",
load_format="mistral") as vllm_model:
for prompt in SYMBOLIC_LANG_PROMPTS:
msg = {"role": "user", "content": prompt}
outputs = vllm_model.model.chat([msg],
sampling_params=SAMPLING_PARAMS)
assert "<EFBFBD>" not in outputs[0].outputs[0].text.strip()
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("model",
MISTRAL_FORMAT_MODELS) # v1 can't do func calling
def test_mistral_function_calling(
vllm_runner,
model: str,
dtype: str,
) -> None:
with vllm_runner(model,
dtype=dtype,
tokenizer_mode="mistral",
config_format="mistral",
load_format="mistral") as vllm_model:
outputs = vllm_model.model.chat(MSGS,
tools=TOOLS,
sampling_params=SAMPLING_PARAMS)
assert outputs[0].outputs[0].text.strip() == EXPECTED_FUNC_CALL