
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
429 lines
16 KiB
Python
429 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""
|
|
WARNING: This test runs in both single-node (4 GPUs) and multi-node
|
|
(2 node with 2 GPUs each) modes. If the test only uses 2 GPUs, it is
|
|
important to set the distributed backend to "mp" to avoid Ray scheduling
|
|
all workers in a node other than the head node, which can cause the test
|
|
to fail.
|
|
"""
|
|
import os
|
|
from dataclasses import dataclass
|
|
from typing import List, Literal, NamedTuple, Optional
|
|
|
|
import pytest
|
|
|
|
from vllm.config import TaskOption
|
|
from vllm.logger import init_logger
|
|
|
|
from ..utils import compare_two_settings, fork_new_process_for_each_test
|
|
|
|
logger = init_logger("test_pipeline_parallel")
|
|
|
|
VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"
|
|
|
|
|
|
class ParallelSetup(NamedTuple):
|
|
tp_size: int
|
|
pp_size: int
|
|
eager_mode: bool
|
|
chunked_prefill: bool
|
|
|
|
|
|
class PPTestOptions(NamedTuple):
|
|
multi_node_only: bool
|
|
trust_remote_code: bool
|
|
tokenizer_mode: Optional[str]
|
|
load_format: Optional[str] = None
|
|
hf_overrides: Optional[str] = None
|
|
|
|
|
|
@dataclass
|
|
class PPTestSettings:
|
|
parallel_setups: List[ParallelSetup]
|
|
distributed_backends: List[str]
|
|
task: TaskOption
|
|
test_options: PPTestOptions
|
|
|
|
@staticmethod
|
|
def detailed(
|
|
*,
|
|
tp_base: int = 1,
|
|
pp_base: int = 2,
|
|
multi_node_only: bool = False,
|
|
task: TaskOption = "auto",
|
|
trust_remote_code: bool = False,
|
|
tokenizer_mode: Optional[str] = None,
|
|
load_format: Optional[str] = None,
|
|
hf_overrides: Optional[str] = None,
|
|
):
|
|
return PPTestSettings(
|
|
parallel_setups=[
|
|
ParallelSetup(tp_size=tp_base,
|
|
pp_size=pp_base,
|
|
eager_mode=False,
|
|
chunked_prefill=False),
|
|
ParallelSetup(tp_size=tp_base,
|
|
pp_size=2 * pp_base,
|
|
eager_mode=False,
|
|
chunked_prefill=True),
|
|
ParallelSetup(tp_size=tp_base,
|
|
pp_size=2 * pp_base,
|
|
eager_mode=True,
|
|
chunked_prefill=False),
|
|
ParallelSetup(tp_size=2 * tp_base,
|
|
pp_size=pp_base,
|
|
eager_mode=False,
|
|
chunked_prefill=True),
|
|
ParallelSetup(tp_size=2 * tp_base,
|
|
pp_size=pp_base,
|
|
eager_mode=True,
|
|
chunked_prefill=False),
|
|
],
|
|
distributed_backends=["mp", "ray"],
|
|
task=task,
|
|
test_options=PPTestOptions(multi_node_only=multi_node_only,
|
|
trust_remote_code=trust_remote_code,
|
|
tokenizer_mode=tokenizer_mode,
|
|
load_format=load_format,
|
|
hf_overrides=hf_overrides),
|
|
)
|
|
|
|
@staticmethod
|
|
def fast(
|
|
*,
|
|
tp_base: int = 1,
|
|
pp_base: int = 2,
|
|
task: TaskOption = "auto",
|
|
multi_node_only: bool = False,
|
|
trust_remote_code: bool = False,
|
|
tokenizer_mode: Optional[str] = None,
|
|
load_format: Optional[str] = None,
|
|
hf_overrides: Optional[str] = None,
|
|
):
|
|
return PPTestSettings(
|
|
parallel_setups=[
|
|
ParallelSetup(tp_size=tp_base,
|
|
pp_size=pp_base,
|
|
eager_mode=True,
|
|
chunked_prefill=False),
|
|
],
|
|
distributed_backends=["mp"],
|
|
task=task,
|
|
test_options=PPTestOptions(multi_node_only=multi_node_only,
|
|
trust_remote_code=trust_remote_code,
|
|
tokenizer_mode=tokenizer_mode,
|
|
load_format=load_format,
|
|
hf_overrides=hf_overrides),
|
|
)
|
|
|
|
def iter_params(self, model_name: str):
|
|
opts = self.test_options
|
|
|
|
for parallel_setup in self.parallel_setups:
|
|
for distributed_backend in self.distributed_backends:
|
|
yield (model_name, parallel_setup, distributed_backend,
|
|
self.task, opts)
|
|
|
|
|
|
# NOTE: You can adjust tp_base and/or pp_base locally to fit the model in GPU
|
|
# The values displayed here are only a rough indicator of the size of the model
|
|
|
|
# yapf: disable
|
|
TEXT_GENERATION_MODELS = {
|
|
# [Decoder-only]
|
|
# Uses Llama
|
|
# "BAAI/AquilaChat-7B": PPTestSettings.fast(),
|
|
"Snowflake/snowflake-arctic-instruct": PPTestSettings.fast(tp_base=8, trust_remote_code=True), # noqa: E501
|
|
"baichuan-inc/Baichuan-7B": PPTestSettings.fast(trust_remote_code=True),
|
|
"baichuan-inc/Baichuan2-13B-Chat": PPTestSettings.fast(trust_remote_code=True), # noqa: E501
|
|
"bigscience/bloomz-1b1": PPTestSettings.fast(),
|
|
"THUDM/chatglm3-6b": PPTestSettings.fast(trust_remote_code=True),
|
|
"CohereForAI/c4ai-command-r-v01": PPTestSettings.fast(tp_base=2, trust_remote_code=True), # noqa: E501
|
|
"databricks/dbrx-instruct": PPTestSettings.fast(tp_base=8),
|
|
"Deci/DeciLM-7B-instruct": PPTestSettings.fast(trust_remote_code=True),
|
|
"deepseek-ai/deepseek-llm-7b-chat": PPTestSettings.fast(),
|
|
"deepseek-ai/DeepSeek-V2-Lite-Chat": PPTestSettings.fast(trust_remote_code=True), # noqa: E501
|
|
"LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct": PPTestSettings.fast(),
|
|
"tiiuae/falcon-7b": PPTestSettings.fast(),
|
|
"google/gemma-2b": PPTestSettings.fast(),
|
|
"google/gemma-2-9b": PPTestSettings.fast(),
|
|
"gpt2": PPTestSettings.fast(),
|
|
"bigcode/starcoder": PPTestSettings.fast(),
|
|
"EleutherAI/gpt-j-6b": PPTestSettings.fast(),
|
|
"EleutherAI/pythia-12b": PPTestSettings.fast(),
|
|
"ibm/PowerLM-3b": PPTestSettings.fast(),
|
|
"ibm/PowerMoE-3b": PPTestSettings.fast(),
|
|
# Uses Llama
|
|
# "internlm/internlm-chat-7b": PPTestSettings.fast(),
|
|
"internlm/internlm2-chat-7b": PPTestSettings.fast(trust_remote_code=True),
|
|
"inceptionai/jais-13b-chat": PPTestSettings.fast(),
|
|
"ai21labs/Jamba-tiny-dev": PPTestSettings.fast(),
|
|
"meta-llama/Meta-Llama-3-8B": PPTestSettings.detailed(),
|
|
"openbmb/MiniCPM-2B-sft-bf16": PPTestSettings.fast(trust_remote_code=True),
|
|
"openbmb/MiniCPM3-4B": PPTestSettings.fast(trust_remote_code=True),
|
|
# Uses Llama
|
|
# "mistralai/Mistral-7B-Instruct-v0.1": PPTestSettings.fast(),
|
|
"state-spaces/mamba-130m-hf": PPTestSettings.fast(),
|
|
"mistralai/Mixtral-8x7B-Instruct-v0.1": PPTestSettings.fast(tp_base=4),
|
|
"mosaicml/mpt-7b": PPTestSettings.fast(),
|
|
"nvidia/Minitron-8B-Base": PPTestSettings.fast(),
|
|
"allenai/OLMo-1B-hf": PPTestSettings.fast(),
|
|
"shanearora/OLMo-7B-1124-hf": PPTestSettings.fast(),
|
|
"allenai/OLMoE-1B-7B-0924-Instruct": PPTestSettings.fast(),
|
|
"facebook/opt-iml-max-1.3b": PPTestSettings.fast(),
|
|
"OrionStarAI/Orion-14B-Chat": PPTestSettings.fast(trust_remote_code=True),
|
|
"adept/persimmon-8b-chat": PPTestSettings.fast(),
|
|
"microsoft/phi-2": PPTestSettings.fast(),
|
|
"microsoft/Phi-3-small-8k-instruct": PPTestSettings.fast(trust_remote_code=True), # noqa: E501
|
|
"microsoft/Phi-3.5-MoE-instruct": PPTestSettings.detailed(trust_remote_code=True, multi_node_only=True, load_format="dummy", hf_overrides='{"num_hidden_layers": 4, "hidden_size": 512, "intermediate_size": 800, "num_attention_heads": 4, "num_key_value_heads": 1}'), # noqa: E501
|
|
"Qwen/Qwen-7B-Chat": PPTestSettings.fast(trust_remote_code=True),
|
|
"Qwen/Qwen2-7B-Instruct": PPTestSettings.fast(),
|
|
"Qwen/Qwen1.5-MoE-A2.7B-Chat": PPTestSettings.fast(),
|
|
"stabilityai/stablelm-3b-4e1t": PPTestSettings.fast(),
|
|
"bigcode/starcoder2-3b": PPTestSettings.fast(),
|
|
"upstage/solar-pro-preview-instruct": PPTestSettings.fast(tp_base=2),
|
|
# FIXME: Cannot load tokenizer in latest transformers version.
|
|
# Need to use tokenizer from `meta-llama/Llama-2-7b-chat-hf`
|
|
# "xverse/XVERSE-7B-Chat": PPTestSettings.fast(trust_remote_code=True),
|
|
# [Encoder-only]
|
|
# TODO: Implement PP
|
|
# "facebook/bart-base": PPTestSettings.fast(),
|
|
}
|
|
|
|
EMBEDDING_MODELS = { # type: ignore[var-annotated]
|
|
# [Text-only]
|
|
"intfloat/e5-mistral-7b-instruct": PPTestSettings.fast(),
|
|
"BAAI/bge-multilingual-gemma2": PPTestSettings.fast(),
|
|
"Qwen/Qwen2.5-Math-RM-72B": PPTestSettings.fast(tp_base=4, trust_remote_code=True), # noqa: E501
|
|
}
|
|
|
|
MULTIMODAL_MODELS = {
|
|
# [Decoder-only]
|
|
"Salesforce/blip2-opt-2.7b": PPTestSettings.fast(),
|
|
"facebook/chameleon-7b": PPTestSettings.fast(),
|
|
"adept/fuyu-8b": PPTestSettings.fast(),
|
|
"THUDM/glm-4v-9b": PPTestSettings.fast(trust_remote_code=True),
|
|
"OpenGVLab/InternVL2-1B": PPTestSettings.fast(trust_remote_code=True),
|
|
"llava-hf/llava-1.5-7b-hf": PPTestSettings.fast(),
|
|
"llava-hf/llava-v1.6-mistral-7b-hf": PPTestSettings.fast(),
|
|
"llava-hf/LLaVA-NeXT-Video-7B-hf": PPTestSettings.fast(),
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf": PPTestSettings.fast(),
|
|
"openbmb/MiniCPM-Llama3-V-2_5": PPTestSettings.fast(trust_remote_code=True),
|
|
"allenai/Molmo-7B-D-0924": PPTestSettings.fast(trust_remote_code=True),
|
|
"microsoft/Phi-3-vision-128k-instruct": PPTestSettings.fast(trust_remote_code=True), # noqa: E501
|
|
"mistralai/Pixtral-12B-2409": PPTestSettings.fast(tp_base=2, tokenizer_mode="mistral"), # noqa: E501
|
|
"Qwen/Qwen-VL-Chat": PPTestSettings.fast(trust_remote_code=True),
|
|
"Qwen/Qwen2-Audio-7B-Instruct": PPTestSettings.fast(),
|
|
"Qwen/Qwen2-VL-2B-Instruct": PPTestSettings.fast(),
|
|
"fixie-ai/ultravox-v0_3": PPTestSettings.fast(trust_remote_code=True),
|
|
# [Encoder-decoder]
|
|
# TODO: Implement PP
|
|
# "meta-llama/Llama-3.2-11B-Vision-Instruct": PPTestSettings.fast(),
|
|
}
|
|
# yapf: enable
|
|
|
|
# NOTE: You can update this on your local machine to run specific tests
|
|
TEST_MODELS = [
|
|
# [LANGUAGE GENERATION]
|
|
"microsoft/Phi-3.5-MoE-instruct",
|
|
"meta-llama/Meta-Llama-3-8B",
|
|
"ibm/PowerLM-3b",
|
|
# [LANGUAGE EMBEDDING]
|
|
"intfloat/e5-mistral-7b-instruct",
|
|
"BAAI/bge-multilingual-gemma2",
|
|
# [MULTIMODAL GENERATION]
|
|
"OpenGVLab/InternVL2-1B",
|
|
"microsoft/Phi-3-vision-128k-instruct",
|
|
"fixie-ai/ultravox-v0_3",
|
|
# [LANGUAGE GENERATION - HYBRID ARCH]
|
|
"ai21labs/Jamba-tiny-dev",
|
|
]
|
|
|
|
|
|
def _compare_tp(
|
|
model_name: str,
|
|
parallel_setup: ParallelSetup,
|
|
distributed_backend: str,
|
|
task: TaskOption,
|
|
test_options: PPTestOptions,
|
|
num_gpus_available: int,
|
|
*,
|
|
method: Literal["generate", "encode"],
|
|
):
|
|
(
|
|
tp_size,
|
|
pp_size,
|
|
eager_mode,
|
|
chunked_prefill,
|
|
) = parallel_setup
|
|
(
|
|
multi_node_only,
|
|
trust_remote_code,
|
|
tokenizer_mode,
|
|
load_format,
|
|
hf_overrides,
|
|
) = test_options
|
|
|
|
if num_gpus_available < tp_size * pp_size:
|
|
pytest.skip(f"Need at least {tp_size} x {pp_size} GPUs")
|
|
if VLLM_MULTI_NODE and distributed_backend == "mp":
|
|
pytest.skip("Skipping multi-node pipeline parallel test for "
|
|
"multiprocessing distributed backend")
|
|
if multi_node_only and not VLLM_MULTI_NODE:
|
|
pytest.skip("Not in multi-node setting")
|
|
|
|
common_args = [
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
"float16",
|
|
"--max-model-len",
|
|
"2048",
|
|
"--max-num-seqs",
|
|
"8",
|
|
]
|
|
if chunked_prefill:
|
|
common_args.append("--enable-chunked-prefill")
|
|
if eager_mode:
|
|
common_args.append("--enforce-eager")
|
|
if task != "auto":
|
|
common_args.extend(["--task", task])
|
|
if trust_remote_code:
|
|
common_args.append("--trust-remote-code")
|
|
if tokenizer_mode:
|
|
common_args.extend(["--tokenizer-mode", tokenizer_mode])
|
|
if load_format:
|
|
common_args.extend(["--load-format", load_format])
|
|
if hf_overrides:
|
|
common_args.extend(["--hf-overrides", hf_overrides])
|
|
|
|
if (distributed_backend == "ray" and tp_size == 2 and pp_size == 2
|
|
and chunked_prefill):
|
|
# Test Ray ADAG for a subset of the tests
|
|
pp_env = {
|
|
"VLLM_USE_RAY_COMPILED_DAG": "1",
|
|
"VLLM_USE_RAY_SPMD_WORKER": "1",
|
|
"VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL": "1",
|
|
}
|
|
# Temporary. Currently when zeromq + SPMD is used, it does not properly
|
|
# terminate because of aDAG issue.
|
|
common_args.append("--disable-frontend-multiprocessing")
|
|
else:
|
|
pp_env = None
|
|
|
|
pp_args = [
|
|
*common_args,
|
|
"--pipeline-parallel-size",
|
|
str(pp_size),
|
|
"--tensor-parallel-size",
|
|
str(tp_size),
|
|
"--distributed-executor-backend",
|
|
distributed_backend,
|
|
]
|
|
|
|
# compare without pipeline parallelism
|
|
# NOTE: use mp backend for TP
|
|
# PP tests might involve multiple nodes, and ray might
|
|
# schedule all workers in a node other than the head node,
|
|
# which can cause the test to fail.
|
|
tp_args = [
|
|
*common_args,
|
|
"--tensor-parallel-size",
|
|
str(tp_size),
|
|
"--distributed-executor-backend",
|
|
"mp",
|
|
]
|
|
|
|
try:
|
|
compare_two_settings(model_name,
|
|
pp_args,
|
|
tp_args,
|
|
pp_env,
|
|
method=method)
|
|
except Exception:
|
|
if pp_env is None:
|
|
raise
|
|
else:
|
|
# Ray ADAG tests are flaky, so we don't want to fail the test
|
|
logger.exception("Ray ADAG tests failed")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("model_name", "parallel_setup", "distributed_backend", "task",
|
|
"test_options"),
|
|
[
|
|
params for model_name, settings in TEXT_GENERATION_MODELS.items()
|
|
for params in settings.iter_params(model_name)
|
|
if model_name in TEST_MODELS
|
|
],
|
|
)
|
|
@fork_new_process_for_each_test
|
|
def test_tp_language_generation(
|
|
model_name: str,
|
|
parallel_setup: ParallelSetup,
|
|
distributed_backend: str,
|
|
task: TaskOption,
|
|
test_options: PPTestOptions,
|
|
num_gpus_available,
|
|
):
|
|
_compare_tp(model_name,
|
|
parallel_setup,
|
|
distributed_backend,
|
|
task,
|
|
test_options,
|
|
num_gpus_available,
|
|
method="generate")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("model_name", "parallel_setup", "distributed_backend", "task",
|
|
"test_options"),
|
|
[
|
|
params for model_name, settings in EMBEDDING_MODELS.items()
|
|
for params in settings.iter_params(model_name)
|
|
if model_name in TEST_MODELS
|
|
],
|
|
)
|
|
@fork_new_process_for_each_test
|
|
def test_tp_language_embedding(
|
|
model_name: str,
|
|
parallel_setup: ParallelSetup,
|
|
distributed_backend: str,
|
|
task: TaskOption,
|
|
test_options: PPTestOptions,
|
|
num_gpus_available,
|
|
):
|
|
_compare_tp(model_name,
|
|
parallel_setup,
|
|
distributed_backend,
|
|
task,
|
|
test_options,
|
|
num_gpus_available,
|
|
method="encode")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("model_name", "parallel_setup", "distributed_backend", "task",
|
|
"test_options"),
|
|
[
|
|
params for model_name, settings in MULTIMODAL_MODELS.items()
|
|
for params in settings.iter_params(model_name)
|
|
if model_name in TEST_MODELS
|
|
],
|
|
)
|
|
@fork_new_process_for_each_test
|
|
def test_tp_multimodal_generation(
|
|
model_name: str,
|
|
parallel_setup: ParallelSetup,
|
|
distributed_backend: str,
|
|
task: TaskOption,
|
|
test_options: PPTestOptions,
|
|
num_gpus_available,
|
|
):
|
|
_compare_tp(model_name,
|
|
parallel_setup,
|
|
distributed_backend,
|
|
task,
|
|
test_options,
|
|
num_gpus_available,
|
|
method="generate")
|