533 lines
16 KiB
Markdown
533 lines
16 KiB
Markdown
(multimodal-inputs)=
|
||
|
||
# Multimodal Inputs
|
||
|
||
This page teaches you how to pass multi-modal inputs to [multi-modal models](#supported-mm-models) in vLLM.
|
||
|
||
```{note}
|
||
We are actively iterating on multi-modal support. See [this RFC](gh-issue:4194) for upcoming changes,
|
||
and [open an issue on GitHub](https://github.com/vllm-project/vllm/issues/new/choose) if you have any feedback or feature requests.
|
||
```
|
||
|
||
## Offline Inference
|
||
|
||
To input multi-modal data, follow this schema in {class}`vllm.inputs.PromptType`:
|
||
|
||
- `prompt`: The prompt should follow the format that is documented on HuggingFace.
|
||
- `multi_modal_data`: This is a dictionary that follows the schema defined in {class}`vllm.multimodal.MultiModalDataDict`.
|
||
|
||
### Image
|
||
|
||
You can pass a single image to the `'image'` field of the multi-modal dictionary, as shown in the following examples:
|
||
|
||
```python
|
||
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
||
|
||
# Refer to the HuggingFace repo for the correct format to use
|
||
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
|
||
|
||
# Load the image using PIL.Image
|
||
image = PIL.Image.open(...)
|
||
|
||
# Single prompt inference
|
||
outputs = llm.generate({
|
||
"prompt": prompt,
|
||
"multi_modal_data": {"image": image},
|
||
})
|
||
|
||
for o in outputs:
|
||
generated_text = o.outputs[0].text
|
||
print(generated_text)
|
||
|
||
# Batch inference
|
||
image_1 = PIL.Image.open(...)
|
||
image_2 = PIL.Image.open(...)
|
||
outputs = llm.generate(
|
||
[
|
||
{
|
||
"prompt": "USER: <image>\nWhat is the content of this image?\nASSISTANT:",
|
||
"multi_modal_data": {"image": image_1},
|
||
},
|
||
{
|
||
"prompt": "USER: <image>\nWhat's the color of this image?\nASSISTANT:",
|
||
"multi_modal_data": {"image": image_2},
|
||
}
|
||
]
|
||
)
|
||
|
||
for o in outputs:
|
||
generated_text = o.outputs[0].text
|
||
print(generated_text)
|
||
```
|
||
|
||
Full example: <gh-file:examples/offline_inference_vision_language.py>
|
||
|
||
To substitute multiple images inside the same text prompt, you can pass in a list of images instead:
|
||
|
||
```python
|
||
llm = LLM(
|
||
model="microsoft/Phi-3.5-vision-instruct",
|
||
trust_remote_code=True, # Required to load Phi-3.5-vision
|
||
max_model_len=4096, # Otherwise, it may not fit in smaller GPUs
|
||
limit_mm_per_prompt={"image": 2}, # The maximum number to accept
|
||
)
|
||
|
||
# Refer to the HuggingFace repo for the correct format to use
|
||
prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n"
|
||
|
||
# Load the images using PIL.Image
|
||
image1 = PIL.Image.open(...)
|
||
image2 = PIL.Image.open(...)
|
||
|
||
outputs = llm.generate({
|
||
"prompt": prompt,
|
||
"multi_modal_data": {
|
||
"image": [image1, image2]
|
||
},
|
||
})
|
||
|
||
for o in outputs:
|
||
generated_text = o.outputs[0].text
|
||
print(generated_text)
|
||
```
|
||
|
||
Full example: <gh-file:examples/offline_inference_vision_language_multi_image.py>
|
||
|
||
Multi-image input can be extended to perform video captioning. We show this with [Qwen2-VL](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) as it supports videos:
|
||
|
||
```python
|
||
# Specify the maximum number of frames per video to be 4. This can be changed.
|
||
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
|
||
|
||
# Create the request payload.
|
||
video_frames = ... # load your video making sure it only has the number of frames specified earlier.
|
||
message = {
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."},
|
||
],
|
||
}
|
||
for i in range(len(video_frames)):
|
||
base64_image = encode_image(video_frames[i]) # base64 encoding.
|
||
new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
||
message["content"].append(new_image)
|
||
|
||
# Perform inference and log output.
|
||
outputs = llm.chat([message])
|
||
|
||
for o in outputs:
|
||
generated_text = o.outputs[0].text
|
||
print(generated_text)
|
||
```
|
||
|
||
### Video
|
||
|
||
You can pass a list of NumPy arrays directly to the `'video'` field of the multi-modal dictionary
|
||
instead of using multi-image input.
|
||
|
||
Full example: <gh-file:examples/offline_inference_vision_language.py>
|
||
|
||
### Audio
|
||
|
||
You can pass a tuple `(array, sampling_rate)` to the `'audio'` field of the multi-modal dictionary.
|
||
|
||
Full example: <gh-file:examples/offline_inference_audio_language.py>
|
||
|
||
### Embedding
|
||
|
||
To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model,
|
||
pass a tensor of shape `(num_items, feature_size, hidden_size of LM)` to the corresponding field of the multi-modal dictionary.
|
||
|
||
```python
|
||
# Inference with image embeddings as input
|
||
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
||
|
||
# Refer to the HuggingFace repo for the correct format to use
|
||
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
|
||
|
||
# Embeddings for single image
|
||
# torch.Tensor of shape (1, image_feature_size, hidden_size of LM)
|
||
image_embeds = torch.load(...)
|
||
|
||
outputs = llm.generate({
|
||
"prompt": prompt,
|
||
"multi_modal_data": {"image": image_embeds},
|
||
})
|
||
|
||
for o in outputs:
|
||
generated_text = o.outputs[0].text
|
||
print(generated_text)
|
||
```
|
||
|
||
For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embeddings:
|
||
|
||
```python
|
||
# Construct the prompt based on your model
|
||
prompt = ...
|
||
|
||
# Embeddings for multiple images
|
||
# torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM)
|
||
image_embeds = torch.load(...)
|
||
|
||
# Qwen2-VL
|
||
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
|
||
mm_data = {
|
||
"image": {
|
||
"image_embeds": image_embeds,
|
||
# image_grid_thw is needed to calculate positional encoding.
|
||
"image_grid_thw": torch.load(...), # torch.Tensor of shape (1, 3),
|
||
}
|
||
}
|
||
|
||
# MiniCPM-V
|
||
llm = LLM("openbmb/MiniCPM-V-2_6", trust_remote_code=True, limit_mm_per_prompt={"image": 4})
|
||
mm_data = {
|
||
"image": {
|
||
"image_embeds": image_embeds,
|
||
# image_size_list is needed to calculate details of the sliced image.
|
||
"image_size_list": [image.size for image in images], # list of image sizes
|
||
}
|
||
}
|
||
|
||
outputs = llm.generate({
|
||
"prompt": prompt,
|
||
"multi_modal_data": mm_data,
|
||
})
|
||
|
||
for o in outputs:
|
||
generated_text = o.outputs[0].text
|
||
print(generated_text)
|
||
```
|
||
|
||
## Online Inference
|
||
|
||
Our OpenAI-compatible server accepts multi-modal data via the [Chat Completions API](https://platform.openai.com/docs/api-reference/chat).
|
||
|
||
```{important}
|
||
A chat template is **required** to use Chat Completions API.
|
||
|
||
Although most models come with a chat template, for others you have to define one yourself.
|
||
The chat template can be inferred based on the documentation on the model's HuggingFace repo.
|
||
For example, LLaVA-1.5 (`llava-hf/llava-1.5-7b-hf`) requires a chat template that can be found here: <gh-file:examples/template_llava.jinja>
|
||
```
|
||
|
||
### Image
|
||
|
||
Image input is supported according to [OpenAI Vision API](https://platform.openai.com/docs/guides/vision).
|
||
Here is a simple example using Phi-3.5-Vision.
|
||
|
||
First, launch the OpenAI-compatible server:
|
||
|
||
```bash
|
||
vllm serve microsoft/Phi-3.5-vision-instruct --task generate \
|
||
--trust-remote-code --max-model-len 4096 --limit-mm-per-prompt image=2
|
||
```
|
||
|
||
Then, you can use the OpenAI client as follows:
|
||
|
||
```python
|
||
from openai import OpenAI
|
||
|
||
openai_api_key = "EMPTY"
|
||
openai_api_base = "http://localhost:8000/v1"
|
||
|
||
client = OpenAI(
|
||
api_key=openai_api_key,
|
||
base_url=openai_api_base,
|
||
)
|
||
|
||
# Single-image input inference
|
||
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||
|
||
chat_response = client.chat.completions.create(
|
||
model="microsoft/Phi-3.5-vision-instruct",
|
||
messages=[{
|
||
"role": "user",
|
||
"content": [
|
||
# NOTE: The prompt formatting with the image token `<image>` is not needed
|
||
# since the prompt will be processed automatically by the API server.
|
||
{"type": "text", "text": "What’s in this image?"},
|
||
{"type": "image_url", "image_url": {"url": image_url}},
|
||
],
|
||
}],
|
||
)
|
||
print("Chat completion output:", chat_response.choices[0].message.content)
|
||
|
||
# Multi-image input inference
|
||
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
|
||
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
|
||
|
||
chat_response = client.chat.completions.create(
|
||
model="microsoft/Phi-3.5-vision-instruct",
|
||
messages=[{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "text", "text": "What are the animals in these images?"},
|
||
{"type": "image_url", "image_url": {"url": image_url_duck}},
|
||
{"type": "image_url", "image_url": {"url": image_url_lion}},
|
||
],
|
||
}],
|
||
)
|
||
print("Chat completion output:", chat_response.choices[0].message.content)
|
||
```
|
||
|
||
Full example: <gh-file:examples/openai_chat_completion_client_for_multimodal.py>
|
||
|
||
```{tip}
|
||
Loading from local file paths is also supported on vLLM: You can specify the allowed local media path via `--allowed-local-media-path` when launching the API server/engine,
|
||
and pass the file path as `url` in the API request.
|
||
```
|
||
|
||
```{tip}
|
||
There is no need to place image placeholders in the text content of the API request - they are already represented by the image content.
|
||
In fact, you can place image placeholders in the middle of the text by interleaving text and image content.
|
||
```
|
||
|
||
````{note}
|
||
By default, the timeout for fetching images through HTTP URL is `5` seconds.
|
||
You can override this by setting the environment variable:
|
||
|
||
```console
|
||
$ export VLLM_IMAGE_FETCH_TIMEOUT=<timeout>
|
||
```
|
||
````
|
||
|
||
### Video
|
||
|
||
Instead of `image_url`, you can pass a video file via `video_url`. Here is a simple example using [LLaVA-OneVision](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf).
|
||
|
||
First, launch the OpenAI-compatible server:
|
||
|
||
```bash
|
||
vllm serve llava-hf/llava-onevision-qwen2-0.5b-ov-hf --task generate --max-model-len 8192
|
||
```
|
||
|
||
Then, you can use the OpenAI client as follows:
|
||
```python
|
||
from openai import OpenAI
|
||
|
||
openai_api_key = "EMPTY"
|
||
openai_api_base = "http://localhost:8000/v1"
|
||
|
||
client = OpenAI(
|
||
api_key=openai_api_key,
|
||
base_url=openai_api_base,
|
||
)
|
||
|
||
video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4"
|
||
|
||
## Use video url in the payload
|
||
chat_completion_from_url = client.chat.completions.create(
|
||
messages=[{
|
||
"role":
|
||
"user",
|
||
"content": [
|
||
{
|
||
"type": "text",
|
||
"text": "What's in this video?"
|
||
},
|
||
{
|
||
"type": "video_url",
|
||
"video_url": {
|
||
"url": video_url
|
||
},
|
||
},
|
||
],
|
||
}],
|
||
model=model,
|
||
max_completion_tokens=64,
|
||
)
|
||
|
||
result = chat_completion_from_url.choices[0].message.content
|
||
print("Chat completion output from image url:", result)
|
||
```
|
||
|
||
Full example: <gh-file:examples/openai_chat_completion_client_for_multimodal.py>
|
||
|
||
````{note}
|
||
By default, the timeout for fetching videos through HTTP URL is `30` seconds.
|
||
You can override this by setting the environment variable:
|
||
|
||
```console
|
||
$ export VLLM_VIDEO_FETCH_TIMEOUT=<timeout>
|
||
```
|
||
````
|
||
|
||
### Audio
|
||
|
||
Audio input is supported according to [OpenAI Audio API](https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-in).
|
||
Here is a simple example using Ultravox-v0.3.
|
||
|
||
First, launch the OpenAI-compatible server:
|
||
|
||
```bash
|
||
vllm serve fixie-ai/ultravox-v0_3
|
||
```
|
||
|
||
Then, you can use the OpenAI client as follows:
|
||
|
||
```python
|
||
import base64
|
||
import requests
|
||
from openai import OpenAI
|
||
from vllm.assets.audio import AudioAsset
|
||
|
||
def encode_base64_content_from_url(content_url: str) -> str:
|
||
"""Encode a content retrieved from a remote url to base64 format."""
|
||
|
||
with requests.get(content_url) as response:
|
||
response.raise_for_status()
|
||
result = base64.b64encode(response.content).decode('utf-8')
|
||
|
||
return result
|
||
|
||
openai_api_key = "EMPTY"
|
||
openai_api_base = "http://localhost:8000/v1"
|
||
|
||
client = OpenAI(
|
||
api_key=openai_api_key,
|
||
base_url=openai_api_base,
|
||
)
|
||
|
||
# Any format supported by librosa is supported
|
||
audio_url = AudioAsset("winning_call").url
|
||
audio_base64 = encode_base64_content_from_url(audio_url)
|
||
|
||
chat_completion_from_base64 = client.chat.completions.create(
|
||
messages=[{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "text",
|
||
"text": "What's in this audio?"
|
||
},
|
||
{
|
||
"type": "input_audio",
|
||
"input_audio": {
|
||
"data": audio_base64,
|
||
"format": "wav"
|
||
},
|
||
},
|
||
],
|
||
}],
|
||
model=model,
|
||
max_completion_tokens=64,
|
||
)
|
||
|
||
result = chat_completion_from_base64.choices[0].message.content
|
||
print("Chat completion output from input audio:", result)
|
||
```
|
||
|
||
Alternatively, you can pass `audio_url`, which is the audio counterpart of `image_url` for image input:
|
||
|
||
```python
|
||
chat_completion_from_url = client.chat.completions.create(
|
||
messages=[{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "text",
|
||
"text": "What's in this audio?"
|
||
},
|
||
{
|
||
"type": "audio_url",
|
||
"audio_url": {
|
||
"url": audio_url
|
||
},
|
||
},
|
||
],
|
||
}],
|
||
model=model,
|
||
max_completion_tokens=64,
|
||
)
|
||
|
||
result = chat_completion_from_url.choices[0].message.content
|
||
print("Chat completion output from audio url:", result)
|
||
```
|
||
|
||
Full example: <gh-file:examples/openai_chat_completion_client_for_multimodal.py>
|
||
|
||
````{note}
|
||
By default, the timeout for fetching audios through HTTP URL is `10` seconds.
|
||
You can override this by setting the environment variable:
|
||
|
||
```console
|
||
$ export VLLM_AUDIO_FETCH_TIMEOUT=<timeout>
|
||
```
|
||
````
|
||
|
||
### Embedding
|
||
|
||
vLLM's Embeddings API is a superset of OpenAI's [Embeddings API](https://platform.openai.com/docs/api-reference/embeddings),
|
||
where a list of chat `messages` can be passed instead of batched `inputs`. This enables multi-modal inputs to be passed to embedding models.
|
||
|
||
```{tip}
|
||
The schema of `messages` is exactly the same as in Chat Completions API.
|
||
You can refer to the above tutorials for more details on how to pass each type of multi-modal data.
|
||
```
|
||
|
||
Usually, embedding models do not expect chat-based input, so we need to use a custom chat template to format the text and images.
|
||
Refer to the examples below for illustration.
|
||
|
||
Here is an end-to-end example using VLM2Vec. To serve the model:
|
||
|
||
```bash
|
||
vllm serve TIGER-Lab/VLM2Vec-Full --task embed \
|
||
--trust-remote-code --max-model-len 4096 --chat-template examples/template_vlm2vec.jinja
|
||
```
|
||
|
||
```{important}
|
||
Since VLM2Vec has the same model architecture as Phi-3.5-Vision, we have to explicitly pass `--task embed`
|
||
to run this model in embedding mode instead of text generation mode.
|
||
|
||
The custom chat template is completely different from the original one for this model,
|
||
and can be found here: <gh-file:examples/template_vlm2vec.jinja>
|
||
```
|
||
|
||
Since the request schema is not defined by OpenAI client, we post a request to the server using the lower-level `requests` library:
|
||
|
||
```python
|
||
import requests
|
||
|
||
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||
|
||
response = requests.post(
|
||
"http://localhost:8000/v1/embeddings",
|
||
json={
|
||
"model": "TIGER-Lab/VLM2Vec-Full",
|
||
"messages": [{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "image_url", "image_url": {"url": image_url}},
|
||
{"type": "text", "text": "Represent the given image."},
|
||
],
|
||
}],
|
||
"encoding_format": "float",
|
||
},
|
||
)
|
||
response.raise_for_status()
|
||
response_json = response.json()
|
||
print("Embedding output:", response_json["data"][0]["embedding"])
|
||
```
|
||
|
||
Below is another example, this time using the `MrLight/dse-qwen2-2b-mrl-v1` model.
|
||
|
||
```bash
|
||
vllm serve MrLight/dse-qwen2-2b-mrl-v1 --task embed \
|
||
--trust-remote-code --max-model-len 8192 --chat-template examples/template_dse_qwen2_vl.jinja
|
||
```
|
||
|
||
```{important}
|
||
Like with VLM2Vec, we have to explicitly pass `--task embed`.
|
||
|
||
Additionally, `MrLight/dse-qwen2-2b-mrl-v1` requires an EOS token for embeddings, which is handled
|
||
by a custom chat template: <gh-file:examples/template_dse_qwen2_vl.jinja>
|
||
```
|
||
|
||
```{important}
|
||
Also important, `MrLight/dse-qwen2-2b-mrl-v1` requires a placeholder image of the minimum image size for text query embeddings. See the full code
|
||
example below for details.
|
||
```
|
||
|
||
Full example: <gh-file:examples/openai_chat_embedding_client_for_multimodal.py>
|