194 lines
5.2 KiB
Python
194 lines
5.2 KiB
Python
import weakref
|
|
from typing import List
|
|
|
|
import pytest
|
|
|
|
from vllm import LLM, RequestOutput, SamplingParams
|
|
|
|
from ...conftest import cleanup
|
|
from ..openai.test_vision import TEST_IMAGE_URLS
|
|
|
|
MODEL_NAME = "facebook/opt-125m"
|
|
|
|
PROMPTS = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
|
|
TOKEN_IDS = [
|
|
[0],
|
|
[0, 1],
|
|
[0, 2, 1],
|
|
[0, 3, 1, 2],
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def llm():
|
|
# pytest caches the fixture so we use weakref.proxy to
|
|
# enable garbage collection
|
|
llm = LLM(model=MODEL_NAME,
|
|
max_num_batched_tokens=4096,
|
|
tensor_parallel_size=1,
|
|
gpu_memory_utilization=0.10,
|
|
enforce_eager=True)
|
|
|
|
with llm.deprecate_legacy_api():
|
|
yield weakref.proxy(llm)
|
|
|
|
del llm
|
|
|
|
cleanup()
|
|
|
|
|
|
def assert_outputs_equal(o1: List[RequestOutput], o2: List[RequestOutput]):
|
|
assert [o.outputs for o in o1] == [o.outputs for o in o2]
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize('prompt_token_ids', TOKEN_IDS)
|
|
def test_v1_v2_api_consistency_single_prompt_tokens(llm: LLM,
|
|
prompt_token_ids):
|
|
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
|
|
|
|
with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"):
|
|
v1_output = llm.generate(prompt_token_ids=prompt_token_ids,
|
|
sampling_params=sampling_params)
|
|
|
|
v2_output = llm.generate({"prompt_token_ids": prompt_token_ids},
|
|
sampling_params=sampling_params)
|
|
assert_outputs_equal(v1_output, v2_output)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_v1_v2_api_consistency_multi_prompt_tokens(llm: LLM):
|
|
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
|
|
|
|
with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"):
|
|
v1_output = llm.generate(prompt_token_ids=TOKEN_IDS,
|
|
sampling_params=sampling_params)
|
|
|
|
v2_output = llm.generate(
|
|
[{
|
|
"prompt_token_ids": p
|
|
} for p in TOKEN_IDS],
|
|
sampling_params=sampling_params,
|
|
)
|
|
assert_outputs_equal(v1_output, v2_output)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_multiple_sampling_params(llm: LLM):
|
|
sampling_params = [
|
|
SamplingParams(temperature=0.01, top_p=0.95),
|
|
SamplingParams(temperature=0.3, top_p=0.95),
|
|
SamplingParams(temperature=0.7, top_p=0.95),
|
|
SamplingParams(temperature=0.99, top_p=0.95),
|
|
]
|
|
|
|
# Multiple SamplingParams should be matched with each prompt
|
|
outputs = llm.generate(PROMPTS, sampling_params=sampling_params)
|
|
assert len(PROMPTS) == len(outputs)
|
|
|
|
# Exception raised, if the size of params does not match the size of prompts
|
|
with pytest.raises(ValueError):
|
|
outputs = llm.generate(PROMPTS, sampling_params=sampling_params[:3])
|
|
|
|
# Single SamplingParams should be applied to every prompt
|
|
single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95)
|
|
outputs = llm.generate(PROMPTS, sampling_params=single_sampling_params)
|
|
assert len(PROMPTS) == len(outputs)
|
|
|
|
# sampling_params is None, default params should be applied
|
|
outputs = llm.generate(PROMPTS, sampling_params=None)
|
|
assert len(PROMPTS) == len(outputs)
|
|
|
|
|
|
def test_chat():
|
|
|
|
llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")
|
|
|
|
prompt1 = "Explain the concept of entropy."
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "You are a helpful assistant"
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": prompt1
|
|
},
|
|
]
|
|
outputs = llm.chat(messages)
|
|
assert len(outputs) == 1
|
|
|
|
|
|
def test_multi_chat():
|
|
|
|
llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")
|
|
|
|
prompt1 = "Explain the concept of entropy."
|
|
prompt2 = "Explain what among us is."
|
|
|
|
conversation1 = [
|
|
{
|
|
"role": "system",
|
|
"content": "You are a helpful assistant"
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": prompt1
|
|
},
|
|
]
|
|
|
|
conversation2 = [
|
|
{
|
|
"role": "system",
|
|
"content": "You are a helpful assistant"
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": prompt2
|
|
},
|
|
]
|
|
|
|
messages = [conversation1, conversation2]
|
|
|
|
outputs = llm.chat(messages)
|
|
assert len(outputs) == 2
|
|
|
|
|
|
@pytest.mark.parametrize("image_urls",
|
|
[[TEST_IMAGE_URLS[0], TEST_IMAGE_URLS[1]]])
|
|
def test_chat_multi_image(image_urls: List[str]):
|
|
llm = LLM(
|
|
model="microsoft/Phi-3.5-vision-instruct",
|
|
dtype="bfloat16",
|
|
max_model_len=4096,
|
|
max_num_seqs=5,
|
|
enforce_eager=True,
|
|
trust_remote_code=True,
|
|
limit_mm_per_prompt={"image": 2},
|
|
)
|
|
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
*({
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url
|
|
}
|
|
} for image_url in image_urls),
|
|
{
|
|
"type": "text",
|
|
"text": "What's in this image?"
|
|
},
|
|
],
|
|
}]
|
|
outputs = llm.chat(messages)
|
|
assert len(outputs) >= 0
|