
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com> Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com> Co-authored-by: Patrick Horn <patrick.horn@gmail.com> Co-authored-by: simon-mo <xmo@berkeley.edu> Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
732 lines
31 KiB
Plaintext
732 lines
31 KiB
Plaintext
#include <torch/all.h>
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
|
|
#include "cuda_utils.h"
|
|
#include "cuda_compat.h"
|
|
#include "dispatch_utils.h"
|
|
|
|
#ifdef USE_ROCM
|
|
#include "quantization/fp8/amd/quant_utils.cuh"
|
|
#else
|
|
#include "quantization/fp8/nvidia/quant_utils.cuh"
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
#ifdef USE_ROCM
|
|
#include <hip/hip_bf16.h>
|
|
typedef __hip_bfloat16 __nv_bfloat16;
|
|
#endif
|
|
|
|
void swap_blocks(torch::Tensor& src, torch::Tensor& dst,
|
|
const torch::Tensor& block_mapping) {
|
|
torch::Device src_device = src.device();
|
|
torch::Device dst_device = dst.device();
|
|
cudaMemcpyKind memcpy_type;
|
|
if (src_device.is_cuda() && dst_device.is_cuda()) {
|
|
TORCH_CHECK(src_device.index() == dst_device.index(),
|
|
"src and dst must be on the same GPU");
|
|
memcpy_type = cudaMemcpyDeviceToDevice;
|
|
} else if (src_device.is_cuda() && dst_device.is_cpu()) {
|
|
memcpy_type = cudaMemcpyDeviceToHost;
|
|
} else if (src_device.is_cpu() && dst_device.is_cuda()) {
|
|
memcpy_type = cudaMemcpyHostToDevice;
|
|
} else {
|
|
TORCH_CHECK(false, "Invalid device combination");
|
|
}
|
|
|
|
// NOTE(youkaichao): keep in mind that `block_mapping` should be
|
|
// a cpu tensor, otherwise every `item` call will require a gpu-cpu
|
|
// synchronization.
|
|
TORCH_CHECK(block_mapping.device().is_cpu(), "block_mapping must be on CPU");
|
|
|
|
char* src_ptr = static_cast<char*>(src.data_ptr());
|
|
char* dst_ptr = static_cast<char*>(dst.data_ptr());
|
|
|
|
// We use the stride instead of numel in case the cache is padded for memory
|
|
// alignment reasons, we assume the blocks data (inclusive of any padding)
|
|
// is contiguous in memory
|
|
const int64_t block_size_in_bytes = src.element_size() * src.stride(0);
|
|
const at::cuda::OptionalCUDAGuard device_guard(
|
|
src_device.is_cuda() ? src_device : dst_device);
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
// NOTE(woosuk): This can be slow if the number of blocks is large.
|
|
const int64_t num_blocks = block_mapping.size(0);
|
|
for (size_t i = 0; i < num_blocks; i++) {
|
|
int64_t src_block_number = block_mapping[i][0].item<int64_t>();
|
|
int64_t dst_block_number = block_mapping[i][1].item<int64_t>();
|
|
int64_t src_offset = src_block_number * block_size_in_bytes;
|
|
int64_t dst_offset = dst_block_number * block_size_in_bytes;
|
|
cudaMemcpyAsync(dst_ptr + dst_offset, src_ptr + src_offset,
|
|
block_size_in_bytes, memcpy_type, stream);
|
|
}
|
|
}
|
|
|
|
namespace vllm {
|
|
|
|
// Grid: (num_layers, num_pairs)
|
|
template <typename scalar_t>
|
|
__global__ void copy_blocks_kernel(int64_t* key_cache_ptrs,
|
|
int64_t* value_cache_ptrs,
|
|
const int64_t* __restrict__ block_mapping,
|
|
const int numel_per_block) {
|
|
const int layer_idx = blockIdx.x;
|
|
const int pair_idx = blockIdx.y;
|
|
|
|
scalar_t* key_cache = reinterpret_cast<scalar_t*>(key_cache_ptrs[layer_idx]);
|
|
scalar_t* value_cache =
|
|
reinterpret_cast<scalar_t*>(value_cache_ptrs[layer_idx]);
|
|
int64_t src_block_number = block_mapping[2 * pair_idx];
|
|
int64_t dst_block_number = block_mapping[2 * pair_idx + 1];
|
|
|
|
const int64_t src_block_offset = src_block_number * numel_per_block;
|
|
const int64_t dst_block_offset = dst_block_number * numel_per_block;
|
|
for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
|
|
int64_t src_offset = src_block_offset + i;
|
|
int64_t dst_offset = dst_block_offset + i;
|
|
key_cache[dst_offset] = key_cache[src_offset];
|
|
}
|
|
for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
|
|
int64_t src_offset = src_block_offset + i;
|
|
int64_t dst_offset = dst_block_offset + i;
|
|
value_cache[dst_offset] = value_cache[src_offset];
|
|
}
|
|
}
|
|
|
|
// Kernel for MLA, which works on a single joint kv_cache
|
|
// Grid: (num_layers, num_pairs)
|
|
template <typename scalar_t>
|
|
__global__ void copy_blocks_mla_kernel(
|
|
int64_t* cache_ptrs, const int64_t* __restrict__ block_mapping,
|
|
const int mem_footprint_per_block) {
|
|
const int layer_idx = blockIdx.x;
|
|
const int pair_idx = blockIdx.y;
|
|
scalar_t* cache = reinterpret_cast<scalar_t*>(cache_ptrs[layer_idx]);
|
|
int64_t src_block = block_mapping[2 * pair_idx];
|
|
int64_t dst_block = block_mapping[2 * pair_idx + 1];
|
|
int64_t src_offset = src_block * mem_footprint_per_block;
|
|
int64_t dst_offset = dst_block * mem_footprint_per_block;
|
|
for (int i = threadIdx.x; i < mem_footprint_per_block; i += blockDim.x) {
|
|
cache[dst_offset + i] = cache[src_offset + i];
|
|
}
|
|
}
|
|
|
|
} // namespace vllm
|
|
|
|
// Note: the key_caches and value_caches vectors are constant but
|
|
// not the Tensors they contain. The vectors need to be const refs
|
|
// in order to satisfy pytorch's C++ operator registration code.
|
|
void copy_blocks(std::vector<torch::Tensor> const& key_caches,
|
|
std::vector<torch::Tensor> const& value_caches,
|
|
const torch::Tensor& block_mapping) {
|
|
int num_layers = key_caches.size();
|
|
TORCH_CHECK(num_layers == value_caches.size());
|
|
if (num_layers == 0) {
|
|
return;
|
|
}
|
|
torch::Device cache_device = key_caches[0].device();
|
|
TORCH_CHECK(cache_device.is_cuda());
|
|
|
|
// Create data structures for the kernel.
|
|
// Create an array of pointers to the key and value caches.
|
|
int64_t key_cache_ptrs[num_layers];
|
|
int64_t value_cache_ptrs[num_layers];
|
|
for (int layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
|
|
key_cache_ptrs[layer_idx] =
|
|
reinterpret_cast<int64_t>(key_caches[layer_idx].data_ptr());
|
|
value_cache_ptrs[layer_idx] =
|
|
reinterpret_cast<int64_t>(value_caches[layer_idx].data_ptr());
|
|
}
|
|
|
|
// block_mapping is a 2D tensor with shape (num_pairs, 2).
|
|
int num_pairs = block_mapping.size(0);
|
|
|
|
// Move the data structures to the GPU.
|
|
// NOTE: This synchronizes the CPU and GPU.
|
|
torch::Tensor key_cache_ptrs_tensor =
|
|
torch::from_blob(key_cache_ptrs, {num_layers}, torch::kInt64)
|
|
.to(cache_device);
|
|
torch::Tensor value_cache_ptrs_tensor =
|
|
torch::from_blob(value_cache_ptrs, {num_layers}, torch::kInt64)
|
|
.to(cache_device);
|
|
|
|
// Launch the kernel.
|
|
const int numel_per_block = key_caches[0][0].numel();
|
|
dim3 grid(num_layers, num_pairs);
|
|
dim3 block(std::min(1024, numel_per_block));
|
|
const at::cuda::OptionalCUDAGuard device_guard(cache_device);
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(
|
|
key_caches[0].scalar_type(), "copy_blocks_kernel", ([&] {
|
|
vllm::copy_blocks_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
|
key_cache_ptrs_tensor.data_ptr<int64_t>(),
|
|
value_cache_ptrs_tensor.data_ptr<int64_t>(),
|
|
block_mapping.data_ptr<int64_t>(), numel_per_block);
|
|
}));
|
|
}
|
|
|
|
// copy blocks kernel for MLA (assumes a joint KV-cache)
|
|
void copy_blocks_mla(std::vector<torch::Tensor> const& kv_caches,
|
|
const torch::Tensor& block_mapping) {
|
|
int num_layers = kv_caches.size();
|
|
if (num_layers == 0) {
|
|
return;
|
|
}
|
|
torch::Device cache_device = kv_caches[0].device();
|
|
TORCH_CHECK(cache_device.is_cuda(), "kv_cache must be on CUDA");
|
|
|
|
std::vector<int64_t> cache_ptrs(num_layers);
|
|
for (int layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
|
|
cache_ptrs[layer_idx] =
|
|
reinterpret_cast<int64_t>(kv_caches[layer_idx].data_ptr());
|
|
}
|
|
torch::Tensor cache_ptrs_tensor =
|
|
torch::from_blob(cache_ptrs.data(), {num_layers}, torch::kInt64)
|
|
.to(cache_device);
|
|
|
|
int num_pairs = block_mapping.size(0);
|
|
// We use the stride instead of numel in case the cache is padded for memory
|
|
// alignment reasons, we assume the blocks data (inclusive of any padding)
|
|
// is contiguous in memory
|
|
int mem_footprint_per_block = kv_caches[0].stride(0);
|
|
dim3 grid(num_layers, num_pairs);
|
|
dim3 block(std::min(1024, mem_footprint_per_block));
|
|
const at::cuda::OptionalCUDAGuard device_guard(cache_device);
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(
|
|
kv_caches[0].scalar_type(), "copy_blocks_mla_kernel", ([&] {
|
|
vllm::copy_blocks_mla_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
|
cache_ptrs_tensor.data_ptr<int64_t>(),
|
|
block_mapping.data_ptr<int64_t>(), mem_footprint_per_block);
|
|
}));
|
|
}
|
|
|
|
namespace vllm {
|
|
|
|
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
|
__global__ void reshape_and_cache_kernel(
|
|
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
|
|
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
|
|
cache_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x,
|
|
// block_size, x]
|
|
cache_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size,
|
|
// block_size]
|
|
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
|
const int key_stride, const int value_stride, const int num_heads,
|
|
const int head_size, const int block_size, const int x,
|
|
const float* k_scale, const float* v_scale) {
|
|
const int64_t token_idx = blockIdx.x;
|
|
const int64_t slot_idx = slot_mapping[token_idx];
|
|
if (slot_idx < 0) {
|
|
// Padding token that should be ignored.
|
|
return;
|
|
}
|
|
|
|
const int64_t block_idx = slot_idx / block_size;
|
|
const int64_t block_offset = slot_idx % block_size;
|
|
|
|
const int n = num_heads * head_size;
|
|
for (int i = threadIdx.x; i < n; i += blockDim.x) {
|
|
const int64_t src_key_idx = token_idx * key_stride + i;
|
|
const int64_t src_value_idx = token_idx * value_stride + i;
|
|
|
|
const int head_idx = i / head_size;
|
|
const int head_offset = i % head_size;
|
|
const int x_idx = head_offset / x;
|
|
const int x_offset = head_offset % x;
|
|
|
|
const int64_t tgt_key_idx =
|
|
block_idx * num_heads * (head_size / x) * block_size * x +
|
|
head_idx * (head_size / x) * block_size * x + x_idx * block_size * x +
|
|
block_offset * x + x_offset;
|
|
const int64_t tgt_value_idx =
|
|
block_idx * num_heads * head_size * block_size +
|
|
head_idx * head_size * block_size + head_offset * block_size +
|
|
block_offset;
|
|
scalar_t tgt_key = key[src_key_idx];
|
|
scalar_t tgt_value = value[src_value_idx];
|
|
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
|
key_cache[tgt_key_idx] = tgt_key;
|
|
value_cache[tgt_value_idx] = tgt_value;
|
|
} else {
|
|
key_cache[tgt_key_idx] =
|
|
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, *k_scale);
|
|
value_cache[tgt_value_idx] =
|
|
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, *v_scale);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
|
__global__ void reshape_and_cache_flash_kernel(
|
|
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
|
|
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
|
|
cache_t* __restrict__ key_cache, // [num_blocks, block_size, num_heads,
|
|
// head_size]
|
|
cache_t* __restrict__ value_cache, // [num_blocks, block_size, num_heads,
|
|
// head_size]
|
|
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
|
const int block_stride, const int key_stride, const int value_stride,
|
|
const int num_heads, const int head_size, const int block_size,
|
|
const float* k_scale, const float* v_scale) {
|
|
const int64_t token_idx = blockIdx.x;
|
|
const int64_t slot_idx = slot_mapping[token_idx];
|
|
// NOTE: slot_idx can be -1 if the token is padded
|
|
if (slot_idx < 0) {
|
|
return;
|
|
}
|
|
const int64_t block_idx = slot_idx / block_size;
|
|
const int64_t block_offset = slot_idx % block_size;
|
|
const int n = num_heads * head_size;
|
|
for (int i = threadIdx.x; i < n; i += blockDim.x) {
|
|
const int64_t src_key_idx = token_idx * key_stride + i;
|
|
const int64_t src_value_idx = token_idx * value_stride + i;
|
|
const int head_idx = i / head_size;
|
|
const int head_offset = i % head_size;
|
|
const int64_t tgt_key_value_idx = block_idx * block_stride +
|
|
block_offset * num_heads * head_size +
|
|
head_idx * head_size + head_offset;
|
|
scalar_t tgt_key = key[src_key_idx];
|
|
scalar_t tgt_value = value[src_value_idx];
|
|
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
|
key_cache[tgt_key_value_idx] = tgt_key;
|
|
value_cache[tgt_key_value_idx] = tgt_value;
|
|
} else {
|
|
key_cache[tgt_key_value_idx] =
|
|
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, *k_scale);
|
|
value_cache[tgt_key_value_idx] =
|
|
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, *v_scale);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
|
__global__ void concat_and_cache_mla_kernel(
|
|
const scalar_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
|
|
const scalar_t* __restrict__ k_pe, // [num_tokens, pe_dim]
|
|
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
|
|
// + pe_dim)]
|
|
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
|
const int block_stride, //
|
|
const int entry_stride, //
|
|
const int kv_c_stride, //
|
|
const int k_pe_stride, //
|
|
const int kv_lora_rank, //
|
|
const int pe_dim, //
|
|
const int block_size, //
|
|
const float* scale //
|
|
) {
|
|
const int64_t token_idx = blockIdx.x;
|
|
const int64_t slot_idx = slot_mapping[token_idx];
|
|
// NOTE: slot_idx can be -1 if the token is padded
|
|
if (slot_idx < 0) {
|
|
return;
|
|
}
|
|
const int64_t block_idx = slot_idx / block_size;
|
|
const int64_t block_offset = slot_idx % block_size;
|
|
|
|
auto copy = [&](const scalar_t* __restrict__ src, cache_t* __restrict__ dst,
|
|
int src_stride, int dst_stride, int size, int offset) {
|
|
for (int i = threadIdx.x; i < size; i += blockDim.x) {
|
|
const int64_t src_idx = token_idx * src_stride + i;
|
|
const int64_t dst_idx =
|
|
block_idx * block_stride + block_offset * entry_stride + i + offset;
|
|
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
|
dst[dst_idx] = src[src_idx];
|
|
} else {
|
|
dst[dst_idx] =
|
|
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(src[src_idx], *scale);
|
|
}
|
|
}
|
|
};
|
|
|
|
copy(kv_c, kv_cache, kv_c_stride, block_stride, kv_lora_rank, 0);
|
|
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
|
|
}
|
|
|
|
} // namespace vllm
|
|
|
|
// KV_T is the stored data type of kv-cache.
|
|
// CACHE_T is the data type of key and value tensors.
|
|
// KV_DTYPE is the real data type of kv-cache.
|
|
#define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, KV_DTYPE) \
|
|
vllm::reshape_and_cache_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
|
<<<grid, block, 0, stream>>>( \
|
|
reinterpret_cast<KV_T*>(key.data_ptr()), \
|
|
reinterpret_cast<KV_T*>(value.data_ptr()), \
|
|
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
|
|
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
|
|
slot_mapping.data_ptr<int64_t>(), key_stride, value_stride, \
|
|
num_heads, head_size, block_size, x, \
|
|
reinterpret_cast<const float*>(k_scale.data_ptr()), \
|
|
reinterpret_cast<const float*>(v_scale.data_ptr()));
|
|
|
|
void reshape_and_cache(
|
|
torch::Tensor& key, // [num_tokens, num_heads, head_size]
|
|
torch::Tensor& value, // [num_tokens, num_heads, head_size]
|
|
torch::Tensor&
|
|
key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
|
torch::Tensor&
|
|
value_cache, // [num_blocks, num_heads, head_size, block_size]
|
|
torch::Tensor& slot_mapping, // [num_tokens]
|
|
const std::string& kv_cache_dtype, torch::Tensor& k_scale,
|
|
torch::Tensor& v_scale) {
|
|
int num_tokens = key.size(0);
|
|
int num_heads = key.size(1);
|
|
int head_size = key.size(2);
|
|
int block_size = key_cache.size(3);
|
|
int x = key_cache.size(4);
|
|
|
|
int key_stride = key.stride(0);
|
|
int value_stride = value.stride(0);
|
|
|
|
dim3 grid(num_tokens);
|
|
dim3 block(std::min(num_heads * head_size, 512));
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
|
|
CALL_RESHAPE_AND_CACHE)
|
|
}
|
|
|
|
// KV_T is the stored data type of kv-cache.
|
|
// CACHE_T is the data type of key and value tensors.
|
|
// KV_DTYPE is the real data type of kv-cache.
|
|
#define CALL_RESHAPE_AND_CACHE_FLASH(KV_T, CACHE_T, KV_DTYPE) \
|
|
vllm::reshape_and_cache_flash_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
|
<<<grid, block, 0, stream>>>( \
|
|
reinterpret_cast<KV_T*>(key.data_ptr()), \
|
|
reinterpret_cast<KV_T*>(value.data_ptr()), \
|
|
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
|
|
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
|
|
slot_mapping.data_ptr<int64_t>(), block_stride, key_stride, \
|
|
value_stride, num_heads, head_size, block_size, \
|
|
reinterpret_cast<const float*>(k_scale.data_ptr()), \
|
|
reinterpret_cast<const float*>(v_scale.data_ptr()));
|
|
|
|
void reshape_and_cache_flash(
|
|
torch::Tensor& key, // [num_tokens, num_heads, head_size]
|
|
torch::Tensor& value, // [num_tokens, num_heads, head_size]
|
|
torch::Tensor& key_cache, // [num_blocks, block_size, num_heads, head_size]
|
|
torch::Tensor&
|
|
value_cache, // [num_blocks, block_size, num_heads, head_size]
|
|
torch::Tensor& slot_mapping, // [num_tokens] or [num_actual_tokens]
|
|
const std::string& kv_cache_dtype, torch::Tensor& k_scale,
|
|
torch::Tensor& v_scale) {
|
|
// NOTE(woosuk): In vLLM V1, key.size(0) can be different from
|
|
// slot_mapping.size(0) because of padding for CUDA graphs.
|
|
// In vLLM V0, key.size(0) is always equal to slot_mapping.size(0) because
|
|
// both include padding.
|
|
// In vLLM V1, however, key.size(0) can be larger than slot_mapping.size(0)
|
|
// since key includes padding for CUDA graphs, while slot_mapping does not.
|
|
// In this case, slot_mapping.size(0) represents the actual number of tokens
|
|
// before padding.
|
|
// For compatibility with both cases, we use slot_mapping.size(0) as the
|
|
// number of tokens.
|
|
int num_tokens = slot_mapping.size(0);
|
|
int num_heads = key.size(1);
|
|
int head_size = key.size(2);
|
|
int block_size = key_cache.size(1);
|
|
|
|
int key_stride = key.stride(0);
|
|
int value_stride = value.stride(0);
|
|
int block_stride = key_cache.stride(0);
|
|
TORCH_CHECK(key_cache.stride(0) == value_cache.stride(0));
|
|
|
|
dim3 grid(num_tokens);
|
|
dim3 block(std::min(num_heads * head_size, 512));
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
|
|
CALL_RESHAPE_AND_CACHE_FLASH);
|
|
}
|
|
|
|
// KV_T is the stored data type of kv-cache.
|
|
// CACHE_T is the data type of key and value tensors.
|
|
// KV_DTYPE is the real data type of kv-cache.
|
|
#define CALL_CONCAT_AND_CACHE_MLA(KV_T, CACHE_T, KV_DTYPE) \
|
|
vllm::concat_and_cache_mla_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
|
<<<grid, block, 0, stream>>>( \
|
|
reinterpret_cast<KV_T*>(kv_c.data_ptr()), \
|
|
reinterpret_cast<KV_T*>(k_pe.data_ptr()), \
|
|
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
|
|
slot_mapping.data_ptr<int64_t>(), block_stride, entry_stride, \
|
|
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
|
|
reinterpret_cast<const float*>(scale.data_ptr()));
|
|
|
|
void concat_and_cache_mla(
|
|
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
|
|
torch::Tensor& k_pe, // [num_tokens, pe_dim]
|
|
torch::Tensor& kv_cache, // [num_blocks, block_size, (kv_lora_rank +
|
|
// pe_dim)]
|
|
torch::Tensor& slot_mapping, // [num_tokens] or [num_actual_tokens]
|
|
const std::string& kv_cache_dtype, torch::Tensor& scale) {
|
|
// NOTE(woosuk): In vLLM V1, key.size(0) can be different from
|
|
// slot_mapping.size(0) because of padding for CUDA graphs.
|
|
// In vLLM V0, key.size(0) is always equal to slot_mapping.size(0) because
|
|
// both include padding.
|
|
// In vLLM V1, however, key.size(0) can be larger than slot_mapping.size(0)
|
|
// since key includes padding for CUDA graphs, while slot_mapping does not.
|
|
// In this case, slot_mapping.size(0) represents the actual number of tokens
|
|
// before padding.
|
|
// For compatibility with both cases, we use slot_mapping.size(0) as the
|
|
// number of tokens.
|
|
int num_tokens = slot_mapping.size(0);
|
|
int kv_lora_rank = kv_c.size(1);
|
|
int pe_dim = k_pe.size(1);
|
|
int block_size = kv_cache.size(1);
|
|
|
|
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
|
|
|
|
int kv_c_stride = kv_c.stride(0);
|
|
int k_pe_stride = k_pe.stride(0);
|
|
int block_stride = kv_cache.stride(0);
|
|
int entry_stride = kv_cache.stride(1);
|
|
|
|
dim3 grid(num_tokens);
|
|
dim3 block(std::min(kv_lora_rank, 512));
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_c));
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
|
|
CALL_CONCAT_AND_CACHE_MLA);
|
|
}
|
|
|
|
namespace vllm {
|
|
|
|
template <typename Tout, typename Tin, Fp8KVCacheDataType kv_dt>
|
|
__global__ void convert_fp8_kernel(const Tin* __restrict__ src_cache,
|
|
Tout* __restrict__ dst_cache,
|
|
const float scale,
|
|
const int64_t block_stride) {
|
|
const int64_t block_idx = blockIdx.x;
|
|
for (int i = threadIdx.x; i < block_stride; i += blockDim.x) {
|
|
int64_t idx = block_idx * block_stride + i;
|
|
dst_cache[idx] =
|
|
fp8::scaled_convert<Tout, Tin, kv_dt>(src_cache[idx], scale);
|
|
}
|
|
}
|
|
|
|
} // namespace vllm
|
|
|
|
#define CALL_CONVERT_FP8(Tout, Tin, KV_DTYPE) \
|
|
vllm::convert_fp8_kernel<Tout, Tin, KV_DTYPE><<<grid, block, 0, stream>>>( \
|
|
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
|
|
reinterpret_cast<Tout*>(dst_cache.data_ptr()), scale, block_stride);
|
|
|
|
// Only for testing.
|
|
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
|
|
const double scale, const std::string& kv_cache_dtype) {
|
|
torch::Device src_device = src_cache.device();
|
|
torch::Device dst_device = dst_cache.device();
|
|
TORCH_CHECK(src_device.is_cuda(), "src must be on a GPU")
|
|
TORCH_CHECK(dst_device.is_cuda(), "dst must be on a GPU")
|
|
TORCH_CHECK(src_device.index() == dst_device.index(),
|
|
"src and dst must be on the same GPU");
|
|
at::cuda::OptionalCUDAGuard device_guard(src_device);
|
|
|
|
int64_t num_blocks = src_cache.size(0);
|
|
int64_t block_stride = src_cache.stride(0);
|
|
|
|
dim3 grid(num_blocks);
|
|
dim3 block(std::min(block_stride, int64_t(512)));
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
if (kv_cache_dtype == "auto") {
|
|
if (src_cache.dtype() == at::ScalarType::Float) {
|
|
CALL_CONVERT_FP8(uint8_t, float, vllm::Fp8KVCacheDataType::kAuto);
|
|
} else if (src_cache.dtype() == at::ScalarType::Half) {
|
|
CALL_CONVERT_FP8(uint8_t, uint16_t, vllm::Fp8KVCacheDataType::kAuto);
|
|
} else if (src_cache.dtype() == at::ScalarType::BFloat16) {
|
|
CALL_CONVERT_FP8(uint8_t, __nv_bfloat16, vllm::Fp8KVCacheDataType::kAuto);
|
|
} else if (dst_cache.dtype() == at::ScalarType::Float) {
|
|
CALL_CONVERT_FP8(float, uint8_t, vllm::Fp8KVCacheDataType::kAuto);
|
|
} else if (dst_cache.dtype() == at::ScalarType::Half) {
|
|
CALL_CONVERT_FP8(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kAuto);
|
|
} else if (dst_cache.dtype() == at::ScalarType::BFloat16) {
|
|
CALL_CONVERT_FP8(__nv_bfloat16, uint8_t, vllm::Fp8KVCacheDataType::kAuto);
|
|
}
|
|
} else if (kv_cache_dtype == "fp8" || kv_cache_dtype == "fp8_e4m3") {
|
|
if (src_cache.dtype() == at::ScalarType::Float) {
|
|
CALL_CONVERT_FP8(uint8_t, float, vllm::Fp8KVCacheDataType::kFp8E4M3);
|
|
} else if (src_cache.dtype() == at::ScalarType::Half) {
|
|
CALL_CONVERT_FP8(uint8_t, uint16_t, vllm::Fp8KVCacheDataType::kFp8E4M3);
|
|
} else if (src_cache.dtype() == at::ScalarType::BFloat16) {
|
|
CALL_CONVERT_FP8(uint8_t, __nv_bfloat16,
|
|
vllm::Fp8KVCacheDataType::kFp8E4M3);
|
|
} else if (dst_cache.dtype() == at::ScalarType::Float) {
|
|
CALL_CONVERT_FP8(float, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3);
|
|
} else if (dst_cache.dtype() == at::ScalarType::Half) {
|
|
CALL_CONVERT_FP8(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3);
|
|
} else if (dst_cache.dtype() == at::ScalarType::BFloat16) {
|
|
CALL_CONVERT_FP8(__nv_bfloat16, uint8_t,
|
|
vllm::Fp8KVCacheDataType::kFp8E4M3);
|
|
}
|
|
} else {
|
|
TORCH_CHECK(false, "Unsupported data type: ", kv_cache_dtype);
|
|
}
|
|
}
|
|
|
|
namespace vllm {
|
|
|
|
// grid is launched with dimensions (batch, num_splits)
|
|
template <typename scalar_t>
|
|
__global__ void gather_cache(
|
|
const scalar_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
|
|
// ENTRIES...]
|
|
scalar_t* __restrict__ dst, // [TOT_TOKENS, ENTRIES...]
|
|
const int32_t* __restrict__ block_table, // [BATCH, BLOCK_INDICES]
|
|
const int32_t* __restrict__ cu_seq_lens, // [BATCH+1]
|
|
const int32_t block_size, const int32_t entry_size,
|
|
const int64_t block_table_stride, const int64_t cache_block_stride,
|
|
const int64_t cache_entry_stride, const int64_t dst_entry_stride,
|
|
const int32_t* __restrict__ seq_starts) { // Optional: starting offsets per
|
|
// batch
|
|
|
|
const int64_t bid = blockIdx.x; // Batch ID
|
|
const int32_t num_splits = gridDim.y;
|
|
const int32_t split = blockIdx.y;
|
|
const int32_t seq_start = cu_seq_lens[bid];
|
|
const int32_t seq_end = cu_seq_lens[bid + 1];
|
|
const int32_t seq_len = seq_end - seq_start;
|
|
const int32_t tot_blocks = cuda_utils::ceil_div(seq_len, block_size);
|
|
const int32_t split_blocks = cuda_utils::ceil_div(tot_blocks, num_splits);
|
|
|
|
const int32_t split_start = split * split_blocks;
|
|
const int32_t split_end = min((split + 1) * split_blocks, tot_blocks);
|
|
|
|
const bool is_active_split = (split_start < tot_blocks);
|
|
const bool is_last_split = (split_end == tot_blocks);
|
|
|
|
if (!is_active_split) return;
|
|
|
|
int32_t full_blocks_end = split_end;
|
|
int32_t partial_block_size = 0;
|
|
|
|
// Adjust the pointer for the block_table for this batch.
|
|
// If seq_starts is provided, compute an offset based on (seq_starts[bid] /
|
|
// page_size)
|
|
const int32_t batch_offset = bid * block_table_stride;
|
|
int32_t offset = 0;
|
|
if (seq_starts != nullptr) {
|
|
offset = seq_starts[bid] / block_size;
|
|
}
|
|
const int32_t* batch_block_table = block_table + batch_offset + offset;
|
|
|
|
// Adjust dst pointer based on the cumulative sequence lengths.
|
|
dst += seq_start * dst_entry_stride;
|
|
|
|
if (is_last_split) {
|
|
partial_block_size = seq_len % block_size;
|
|
if (partial_block_size) full_blocks_end -= 1;
|
|
}
|
|
|
|
auto copy_entry = [&](const scalar_t* __restrict__ _src,
|
|
scalar_t* __restrict__ _dst) {
|
|
for (int i = threadIdx.x; i < entry_size; i += blockDim.x)
|
|
_dst[i] = _src[i];
|
|
};
|
|
|
|
for (int pid = split_start; pid < full_blocks_end; ++pid) {
|
|
auto block_id = batch_block_table[pid];
|
|
auto block_start_ptr = src_cache + block_id * cache_block_stride;
|
|
auto block_dst_ptr = dst + pid * block_size * dst_entry_stride;
|
|
for (int eid = 0; eid < block_size; ++eid) {
|
|
copy_entry(block_start_ptr + eid * cache_entry_stride,
|
|
block_dst_ptr + eid * dst_entry_stride);
|
|
}
|
|
}
|
|
|
|
if (partial_block_size) {
|
|
auto block_id = batch_block_table[full_blocks_end];
|
|
auto block_start_ptr = src_cache + block_id * cache_block_stride;
|
|
auto block_dst_ptr = dst + full_blocks_end * block_size * dst_entry_stride;
|
|
for (int eid = 0; eid < partial_block_size; ++eid) {
|
|
copy_entry(block_start_ptr + eid * cache_entry_stride,
|
|
block_dst_ptr + eid * dst_entry_stride);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace vllm
|
|
|
|
// Macro to dispatch the kernel based on the data type.
|
|
#define CALL_GATHER_CACHE(CPY_DTYPE) \
|
|
vllm::gather_cache<CPY_DTYPE><<<grid, block, 0, stream>>>( \
|
|
reinterpret_cast<CPY_DTYPE*>(src_cache.data_ptr()), \
|
|
reinterpret_cast<CPY_DTYPE*>(dst.data_ptr()), \
|
|
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
|
|
block_size, entry_size, block_table_stride, cache_block_stride, \
|
|
cache_entry_stride, dst_entry_stride, seq_starts_ptr);
|
|
|
|
// Gather sequences from the cache into the destination tensor.
|
|
// - cu_seq_lens contains the cumulative sequence lengths for each batch
|
|
// - block_table contains the cache block indices for each sequence
|
|
// - Optionally, seq_starts (if provided) offsets the starting block index by
|
|
// (seq_starts[bid] / page_size)
|
|
void gather_cache(
|
|
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
|
|
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
|
|
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
|
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
|
int64_t batch_size,
|
|
std::optional<torch::Tensor> seq_starts = std::nullopt) {
|
|
at::cuda::OptionalCUDAGuard device_guard(src_cache.device());
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
int32_t block_size = src_cache.size(1);
|
|
int32_t entry_size = src_cache.flatten(2, -1).size(2);
|
|
|
|
TORCH_CHECK(block_table.dtype() == torch::kInt32,
|
|
"block_table must be int32");
|
|
TORCH_CHECK(cu_seq_lens.dtype() == torch::kInt32,
|
|
"cu_seq_lens must be int32");
|
|
if (seq_starts.has_value()) {
|
|
TORCH_CHECK(seq_starts.value().dtype() == torch::kInt32,
|
|
"seq_starts must be int32");
|
|
}
|
|
|
|
TORCH_CHECK(src_cache.device() == dst.device(),
|
|
"src_cache and dst must be on the same device");
|
|
TORCH_CHECK(src_cache.device() == block_table.device(),
|
|
"src_cache and block_table must be on the same device");
|
|
TORCH_CHECK(src_cache.device() == cu_seq_lens.device(),
|
|
"src_cache and cu_seq_lens must be on the same device");
|
|
if (seq_starts.has_value()) {
|
|
TORCH_CHECK(src_cache.device() == seq_starts.value().device(),
|
|
"src_cache and seq_starts must be on the same device");
|
|
}
|
|
|
|
int64_t block_table_stride = block_table.stride(0);
|
|
int64_t cache_block_stride = src_cache.stride(0);
|
|
int64_t cache_entry_stride = src_cache.stride(1);
|
|
int64_t dst_entry_stride = dst.stride(0);
|
|
|
|
// Decide on the number of splits based on the batch size.
|
|
int num_splits = batch_size > 128 ? 2 : batch_size > 64 ? 4 : 16;
|
|
dim3 grid(batch_size, num_splits);
|
|
dim3 block(1024);
|
|
|
|
TORCH_CHECK(src_cache.dtype() == dst.dtype(),
|
|
"src_cache and dst must have the same dtype");
|
|
|
|
const int dtype_bits = src_cache.element_size() * 8;
|
|
const int32_t* seq_starts_ptr =
|
|
seq_starts.has_value() ? seq_starts.value().data_ptr<int32_t>() : nullptr;
|
|
|
|
if (dtype_bits == 32) {
|
|
CALL_GATHER_CACHE(uint32_t);
|
|
} else if (dtype_bits == 16) {
|
|
CALL_GATHER_CACHE(uint16_t);
|
|
} else if (dtype_bits == 8) {
|
|
CALL_GATHER_CACHE(uint8_t);
|
|
} else {
|
|
TORCH_CHECK(false, "Unsupported data type width: ", dtype_bits);
|
|
}
|
|
}
|