vllm/tests/tpu/test_quantization_accuracy.py
Harry Mellor 3b352a2f92
Correct capitalisation: VLLM -> vLLM (#14562)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-10 16:36:21 +00:00

52 lines
1.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from dataclasses import dataclass
import lm_eval
import pytest
TASK = "gsm8k"
FILTER = "exact_match,strict-match"
RTOL = 0.03
@dataclass
class GSM8KAccuracyTestConfig:
model_name: str
excepted_value: float
def get_model_args(self) -> str:
return (f"pretrained={self.model_name},"
"max_model_len=4096,max_num_seqs=32")
# NOTE: Accuracy scores measured on GPUs.
ACCURACY_CONFIGS = [
GSM8KAccuracyTestConfig(
model_name="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
excepted_value=0.76), # no bias
# NOTE(rob): We cannot re-initialize vLLM in the same process for TPU,
# so only one of these tests can run in a single call to pytest. As
# a follow up, move this into the LM-EVAL section of the CI.
# GSM8KAccuracyTestConfig(
# model_name="neuralmagic/Qwen2-7B-Instruct-quantized.w8a8",
# excepted_value=0.66), # bias in QKV layers
]
@pytest.mark.parametrize("config", ACCURACY_CONFIGS)
def test_gsm8k_correctness(config: GSM8KAccuracyTestConfig):
results = lm_eval.simple_evaluate(
model="vllm",
model_args=config.get_model_args(),
tasks="gsm8k",
batch_size="auto",
)
EXPECTED_VALUE = config.excepted_value
measured_value = results["results"][TASK][FILTER]
assert (measured_value - RTOL < EXPECTED_VALUE
and measured_value + RTOL > EXPECTED_VALUE
), f"Expected: {EXPECTED_VALUE} | Measured: {measured_value}"