vllm/tests/core/utils.py
Vincent a4f1ee35d6
Deprecate best_of Sampling Parameter in anticipation for vLLM V1 (#13997)
Signed-off-by: vincent-4 <vincentzhongy+githubvincent4@gmail.com>
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Brayden Zhong <b8zhong@uwaterloo.ca>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-05 20:22:43 +00:00

257 lines
8.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import time
from collections import defaultdict
from collections.abc import Sequence as GenericSequence
from typing import Any, Optional
from vllm import SamplingParams
from vllm.core.scheduler import Scheduler, SchedulerOutputs
from vllm.inputs import EncoderDecoderInputs, token_inputs
from vllm.lora.request import LoRARequest
from vllm.sequence import (Logprob, Sequence, SequenceGroup,
SequenceGroupMetadata)
def create_dummy_prompt(
request_id: str,
prompt_length: int = -1,
block_size: Optional[int] = None,
lora_request: Optional[LoRARequest] = None,
prompt_tokens: Optional[list[int]] = None,
min_tokens: int = 0,
max_tokens: int = 16,
) -> tuple[Sequence, SequenceGroup]:
if not block_size:
block_size = prompt_length
if prompt_tokens is None:
# Create dummy prompt sequence with tokens 0...block_size-1
# and prompt "0 ... block_size".
prompt_tokens = list(range(prompt_length))
prompt_str = " ".join([str(t) for t in prompt_tokens])
prompt = Sequence(
int(request_id),
inputs=token_inputs(prompt_tokens, prompt=prompt_str),
block_size=block_size,
)
seq_group = SequenceGroup(
request_id=request_id,
seqs=[prompt],
arrival_time=time.time(),
sampling_params=SamplingParams(max_tokens=max_tokens,
min_tokens=min_tokens),
lora_request=lora_request,
)
return prompt, seq_group
def create_dummy_lora_sequence(request_id: int, token_ids: list[int],
block_size: int, lora_int_id: int) -> Sequence:
return Sequence(seq_id=request_id,
inputs=token_inputs(token_ids),
block_size=block_size,
lora_request=LoRARequest(lora_name="dummy",
lora_path="/dummy",
lora_int_id=lora_int_id))
def create_dummy_sequence(request_id: int, token_ids: list[int],
block_size: int) -> Sequence:
return Sequence(
seq_id=request_id,
inputs=token_inputs(token_ids),
block_size=block_size,
)
def create_dummy_prompt_encoder_decoder(
request_id: str,
decoder_prompt_length: int,
encoder_prompt_length: int,
block_size: Optional[int] = None,
lora_request: Optional[LoRARequest] = None,
) -> tuple[Sequence, Sequence, SequenceGroup]:
if not block_size:
block_size = decoder_prompt_length
# Create dummy prompt sequence with tokens 0...block_size-1
# and prompt "0 ... block_size". Note that the prompt string
# doesn't actually match the tokens
decoder_prompt_tokens = list(range(decoder_prompt_length))
decoder_prompt_str = " ".join([str(t) for t in decoder_prompt_tokens])
encoder_prompt_tokens = list(reversed(list(range(encoder_prompt_length))))
encoder_prompt_str = " ".join([str(t) for t in encoder_prompt_tokens])
inputs: EncoderDecoderInputs = {
"decoder": token_inputs(decoder_prompt_tokens,
prompt=decoder_prompt_str),
"encoder": token_inputs(encoder_prompt_tokens,
prompt=encoder_prompt_str),
}
decoder_prompt = Sequence(int(request_id),
inputs=inputs["decoder"],
block_size=block_size)
encoder_prompt = Sequence(int(request_id),
inputs=inputs["encoder"],
block_size=block_size)
seq_group = SequenceGroup(request_id=request_id,
seqs=[decoder_prompt],
arrival_time=time.time(),
lora_request=lora_request,
encoder_seq=encoder_prompt)
return decoder_prompt, encoder_prompt, seq_group
def create_seq_group(
seq_prompt_len: int = 1024,
seq_output_lens: GenericSequence[int] = (128, ),
request_id: str = '0',
seq_id_start: int = 0,
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
assert len(seq_output_lens) > 0
if sampling_params is None:
sampling_params = SamplingParams()
prompt_token_ids = [0] * seq_prompt_len
seqs: list[Sequence] = []
for seq_id_offset, output_len in enumerate(seq_output_lens):
seq = Sequence(
seq_id=seq_id_start + seq_id_offset,
inputs=token_inputs(prompt_token_ids),
block_size=16,
)
for i in range(output_len):
seq.append_token_id(
token_id=i,
logprobs={i: Logprob(0.0)},
)
seqs.append(seq)
seq_group = SequenceGroup(
request_id=request_id,
seqs=seqs,
sampling_params=sampling_params,
arrival_time=time.time(),
)
return seq_group
def create_seq_group_encoder_decoder(
seq_prompt_len: int = 1024,
seq_output_lens: GenericSequence[int] = (128, ),
request_id: str = '0',
seq_id_start: int = 0,
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
assert len(seq_output_lens) > 0
if sampling_params is None:
sampling_params = SamplingParams()
prompt_token_ids = [0] * seq_prompt_len
inputs: EncoderDecoderInputs = {
"decoder": token_inputs(prompt_token_ids),
"encoder": token_inputs(prompt_token_ids),
}
seqs = []
for seq_id_offset, output_len in enumerate(seq_output_lens):
# Construct decoder input sequences
seq = Sequence(
seq_id=seq_id_start + seq_id_offset,
inputs=inputs["decoder"],
block_size=16,
)
for i in range(output_len):
seq.append_token_id(
token_id=i,
logprobs={i: Logprob(0.0)},
)
seqs.append(seq)
# Encoder input sequence
encoder_seq = Sequence(
seq_id=seq_id_start + len(seq_output_lens),
inputs=inputs["encoder"],
block_size=16,
)
return SequenceGroup(request_id=request_id,
seqs=seqs,
sampling_params=sampling_params,
arrival_time=time.time(),
encoder_seq=encoder_seq)
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
return (seq_len + block_size - 1) // block_size
# Helper functions for scheduler tests
def get_sequence_groups(scheduler_output):
return [s.seq_group for s in scheduler_output.scheduled_seq_groups]
def append_new_token(out, token_id: int):
seq_groups = get_sequence_groups(out)
for seq_group in seq_groups:
for seq in seq_group.get_seqs():
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
def schedule_and_update_computed_tokens(scheduler):
metas, out, _ = scheduler.schedule()
for s in out.scheduled_seq_groups:
s.seq_group.update_num_computed_tokens(s.token_chunk_size)
return metas, out
def append_new_token_seq(seq: Sequence, token_id: int):
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
def append_new_token_seq_group(token_chunk_size, seq_group, token_id: int):
seq_group.update_num_computed_tokens(token_chunk_size)
for seq in seq_group.get_seqs():
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
class SchedulerProxy:
"""
A proxy class to forward calls to the scheduler.
"""
def __init__(self, scheduler: Scheduler):
self.scheduler_ = scheduler
self.call_history: dict[str, list[Any]] = defaultdict(list)
def __getattr__(self, name: str) -> Any:
def wrapper(*args, **kwargs):
result = getattr(self.scheduler_, name)(*args, **kwargs)
self.call_history[name].append((args, kwargs, result))
return result
return wrapper
def last_schedule_ret(
self, ) -> tuple[list[SequenceGroupMetadata], SchedulerOutputs, Any]:
_, _, ret = self.call_history["schedule"][-1]
return ret