
Signed-off-by: vincent-4 <vincentzhongy+githubvincent4@gmail.com> Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca> Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com> Co-authored-by: Brayden Zhong <b8zhong@uwaterloo.ca> Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
257 lines
8.1 KiB
Python
257 lines
8.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import time
|
|
from collections import defaultdict
|
|
from collections.abc import Sequence as GenericSequence
|
|
from typing import Any, Optional
|
|
|
|
from vllm import SamplingParams
|
|
from vllm.core.scheduler import Scheduler, SchedulerOutputs
|
|
from vllm.inputs import EncoderDecoderInputs, token_inputs
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sequence import (Logprob, Sequence, SequenceGroup,
|
|
SequenceGroupMetadata)
|
|
|
|
|
|
def create_dummy_prompt(
|
|
request_id: str,
|
|
prompt_length: int = -1,
|
|
block_size: Optional[int] = None,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
prompt_tokens: Optional[list[int]] = None,
|
|
min_tokens: int = 0,
|
|
max_tokens: int = 16,
|
|
) -> tuple[Sequence, SequenceGroup]:
|
|
if not block_size:
|
|
block_size = prompt_length
|
|
|
|
if prompt_tokens is None:
|
|
# Create dummy prompt sequence with tokens 0...block_size-1
|
|
# and prompt "0 ... block_size".
|
|
prompt_tokens = list(range(prompt_length))
|
|
|
|
prompt_str = " ".join([str(t) for t in prompt_tokens])
|
|
prompt = Sequence(
|
|
int(request_id),
|
|
inputs=token_inputs(prompt_tokens, prompt=prompt_str),
|
|
block_size=block_size,
|
|
)
|
|
seq_group = SequenceGroup(
|
|
request_id=request_id,
|
|
seqs=[prompt],
|
|
arrival_time=time.time(),
|
|
sampling_params=SamplingParams(max_tokens=max_tokens,
|
|
min_tokens=min_tokens),
|
|
lora_request=lora_request,
|
|
)
|
|
|
|
return prompt, seq_group
|
|
|
|
|
|
def create_dummy_lora_sequence(request_id: int, token_ids: list[int],
|
|
block_size: int, lora_int_id: int) -> Sequence:
|
|
return Sequence(seq_id=request_id,
|
|
inputs=token_inputs(token_ids),
|
|
block_size=block_size,
|
|
lora_request=LoRARequest(lora_name="dummy",
|
|
lora_path="/dummy",
|
|
lora_int_id=lora_int_id))
|
|
|
|
|
|
def create_dummy_sequence(request_id: int, token_ids: list[int],
|
|
block_size: int) -> Sequence:
|
|
return Sequence(
|
|
seq_id=request_id,
|
|
inputs=token_inputs(token_ids),
|
|
block_size=block_size,
|
|
)
|
|
|
|
|
|
def create_dummy_prompt_encoder_decoder(
|
|
request_id: str,
|
|
decoder_prompt_length: int,
|
|
encoder_prompt_length: int,
|
|
block_size: Optional[int] = None,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
) -> tuple[Sequence, Sequence, SequenceGroup]:
|
|
if not block_size:
|
|
block_size = decoder_prompt_length
|
|
|
|
# Create dummy prompt sequence with tokens 0...block_size-1
|
|
# and prompt "0 ... block_size". Note that the prompt string
|
|
# doesn't actually match the tokens
|
|
decoder_prompt_tokens = list(range(decoder_prompt_length))
|
|
decoder_prompt_str = " ".join([str(t) for t in decoder_prompt_tokens])
|
|
encoder_prompt_tokens = list(reversed(list(range(encoder_prompt_length))))
|
|
encoder_prompt_str = " ".join([str(t) for t in encoder_prompt_tokens])
|
|
|
|
inputs: EncoderDecoderInputs = {
|
|
"decoder": token_inputs(decoder_prompt_tokens,
|
|
prompt=decoder_prompt_str),
|
|
"encoder": token_inputs(encoder_prompt_tokens,
|
|
prompt=encoder_prompt_str),
|
|
}
|
|
|
|
decoder_prompt = Sequence(int(request_id),
|
|
inputs=inputs["decoder"],
|
|
block_size=block_size)
|
|
|
|
encoder_prompt = Sequence(int(request_id),
|
|
inputs=inputs["encoder"],
|
|
block_size=block_size)
|
|
|
|
seq_group = SequenceGroup(request_id=request_id,
|
|
seqs=[decoder_prompt],
|
|
arrival_time=time.time(),
|
|
lora_request=lora_request,
|
|
encoder_seq=encoder_prompt)
|
|
|
|
return decoder_prompt, encoder_prompt, seq_group
|
|
|
|
|
|
def create_seq_group(
|
|
seq_prompt_len: int = 1024,
|
|
seq_output_lens: GenericSequence[int] = (128, ),
|
|
request_id: str = '0',
|
|
seq_id_start: int = 0,
|
|
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
|
|
|
|
assert len(seq_output_lens) > 0
|
|
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
|
|
prompt_token_ids = [0] * seq_prompt_len
|
|
|
|
seqs: list[Sequence] = []
|
|
for seq_id_offset, output_len in enumerate(seq_output_lens):
|
|
seq = Sequence(
|
|
seq_id=seq_id_start + seq_id_offset,
|
|
inputs=token_inputs(prompt_token_ids),
|
|
block_size=16,
|
|
)
|
|
|
|
for i in range(output_len):
|
|
seq.append_token_id(
|
|
token_id=i,
|
|
logprobs={i: Logprob(0.0)},
|
|
)
|
|
seqs.append(seq)
|
|
|
|
seq_group = SequenceGroup(
|
|
request_id=request_id,
|
|
seqs=seqs,
|
|
sampling_params=sampling_params,
|
|
arrival_time=time.time(),
|
|
)
|
|
|
|
return seq_group
|
|
|
|
|
|
def create_seq_group_encoder_decoder(
|
|
seq_prompt_len: int = 1024,
|
|
seq_output_lens: GenericSequence[int] = (128, ),
|
|
request_id: str = '0',
|
|
seq_id_start: int = 0,
|
|
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
|
|
|
|
assert len(seq_output_lens) > 0
|
|
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
|
|
prompt_token_ids = [0] * seq_prompt_len
|
|
|
|
inputs: EncoderDecoderInputs = {
|
|
"decoder": token_inputs(prompt_token_ids),
|
|
"encoder": token_inputs(prompt_token_ids),
|
|
}
|
|
|
|
seqs = []
|
|
for seq_id_offset, output_len in enumerate(seq_output_lens):
|
|
# Construct decoder input sequences
|
|
seq = Sequence(
|
|
seq_id=seq_id_start + seq_id_offset,
|
|
inputs=inputs["decoder"],
|
|
block_size=16,
|
|
)
|
|
|
|
for i in range(output_len):
|
|
seq.append_token_id(
|
|
token_id=i,
|
|
logprobs={i: Logprob(0.0)},
|
|
)
|
|
seqs.append(seq)
|
|
|
|
# Encoder input sequence
|
|
encoder_seq = Sequence(
|
|
seq_id=seq_id_start + len(seq_output_lens),
|
|
inputs=inputs["encoder"],
|
|
block_size=16,
|
|
)
|
|
|
|
return SequenceGroup(request_id=request_id,
|
|
seqs=seqs,
|
|
sampling_params=sampling_params,
|
|
arrival_time=time.time(),
|
|
encoder_seq=encoder_seq)
|
|
|
|
|
|
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
|
|
return (seq_len + block_size - 1) // block_size
|
|
|
|
|
|
# Helper functions for scheduler tests
|
|
|
|
|
|
def get_sequence_groups(scheduler_output):
|
|
return [s.seq_group for s in scheduler_output.scheduled_seq_groups]
|
|
|
|
|
|
def append_new_token(out, token_id: int):
|
|
seq_groups = get_sequence_groups(out)
|
|
for seq_group in seq_groups:
|
|
for seq in seq_group.get_seqs():
|
|
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
|
|
|
|
|
|
def schedule_and_update_computed_tokens(scheduler):
|
|
metas, out, _ = scheduler.schedule()
|
|
for s in out.scheduled_seq_groups:
|
|
s.seq_group.update_num_computed_tokens(s.token_chunk_size)
|
|
return metas, out
|
|
|
|
|
|
def append_new_token_seq(seq: Sequence, token_id: int):
|
|
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
|
|
|
|
|
|
def append_new_token_seq_group(token_chunk_size, seq_group, token_id: int):
|
|
seq_group.update_num_computed_tokens(token_chunk_size)
|
|
for seq in seq_group.get_seqs():
|
|
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
|
|
|
|
|
|
class SchedulerProxy:
|
|
"""
|
|
A proxy class to forward calls to the scheduler.
|
|
"""
|
|
|
|
def __init__(self, scheduler: Scheduler):
|
|
self.scheduler_ = scheduler
|
|
self.call_history: dict[str, list[Any]] = defaultdict(list)
|
|
|
|
def __getattr__(self, name: str) -> Any:
|
|
|
|
def wrapper(*args, **kwargs):
|
|
result = getattr(self.scheduler_, name)(*args, **kwargs)
|
|
self.call_history[name].append((args, kwargs, result))
|
|
return result
|
|
|
|
return wrapper
|
|
|
|
def last_schedule_ret(
|
|
self, ) -> tuple[list[SequenceGroupMetadata], SchedulerOutputs, Any]:
|
|
_, _, ret = self.call_history["schedule"][-1]
|
|
return ret
|