1233 lines
35 KiB
Python
1233 lines
35 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
||
"""
|
||
This example shows how to use vLLM for running offline inference with
|
||
the correct prompt format on vision language models for text generation.
|
||
|
||
For most models, the prompt format should follow corresponding examples
|
||
on HuggingFace model repository.
|
||
"""
|
||
import os
|
||
import random
|
||
from contextlib import contextmanager
|
||
from dataclasses import asdict
|
||
from typing import NamedTuple, Optional
|
||
|
||
from huggingface_hub import snapshot_download
|
||
from transformers import AutoTokenizer
|
||
|
||
from vllm import LLM, EngineArgs, SamplingParams
|
||
from vllm.assets.image import ImageAsset
|
||
from vllm.assets.video import VideoAsset
|
||
from vllm.lora.request import LoRARequest
|
||
from vllm.utils import FlexibleArgumentParser
|
||
|
||
|
||
class ModelRequestData(NamedTuple):
|
||
engine_args: EngineArgs
|
||
prompts: list[str]
|
||
stop_token_ids: Optional[list[int]] = None
|
||
lora_requests: Optional[list[LoRARequest]] = None
|
||
|
||
|
||
# NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on
|
||
# lower-end GPUs.
|
||
# Unless specified, these settings have been tested to work on a single L4.
|
||
|
||
|
||
# Aria
|
||
def run_aria(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
model_name = "rhymes-ai/Aria"
|
||
|
||
# NOTE: Need L40 (or equivalent) to avoid OOM
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
dtype="bfloat16",
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
prompts = [(f"<|im_start|>user\n<fim_prefix><|img|><fim_suffix>{question}"
|
||
"<|im_end|>\n<|im_start|>assistant\n")
|
||
for question in questions]
|
||
|
||
stop_token_ids = [93532, 93653, 944, 93421, 1019, 93653, 93519]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
stop_token_ids=stop_token_ids,
|
||
)
|
||
|
||
|
||
# Aya Vision
|
||
def run_aya_vision(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
model_name = "CohereForAI/aya-vision-8b"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=2048,
|
||
max_num_seqs=2,
|
||
mm_processor_kwargs={"crop_to_patches": True},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
prompts = [
|
||
f"<|START_OF_TURN_TOKEN|><|USER_TOKEN|><image>{question}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
|
||
for question in questions
|
||
]
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# BLIP-2
|
||
def run_blip2(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
# BLIP-2 prompt format is inaccurate on HuggingFace model repository.
|
||
# See https://huggingface.co/Salesforce/blip2-opt-2.7b/discussions/15#64ff02f3f8cf9e4f5b038262 #noqa
|
||
prompts = [f"Question: {question} Answer:" for question in questions]
|
||
engine_args = EngineArgs(
|
||
model="Salesforce/blip2-opt-6.7b",
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Chameleon
|
||
def run_chameleon(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
prompts = [f"{question}<image>" for question in questions]
|
||
engine_args = EngineArgs(
|
||
model="facebook/chameleon-7b",
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Deepseek-VL2
|
||
def run_deepseek_vl2(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
model_name = "deepseek-ai/deepseek-vl2-tiny"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
hf_overrides={"architectures": ["DeepseekVLV2ForCausalLM"]},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
prompts = [
|
||
f"<|User|>: <image>\n{question}\n\n<|Assistant|>:"
|
||
for question in questions
|
||
]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Florence2
|
||
def run_florence2(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
engine_args = EngineArgs(
|
||
model="microsoft/Florence-2-large",
|
||
tokenizer="Isotr0py/Florence-2-tokenizer",
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
trust_remote_code=True,
|
||
dtype="bfloat16",
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
prompts = ["<MORE_DETAILED_CAPTION>" for _ in questions]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Fuyu
|
||
def run_fuyu(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
prompts = [f"{question}\n" for question in questions]
|
||
engine_args = EngineArgs(
|
||
model="adept/fuyu-8b",
|
||
max_model_len=2048,
|
||
max_num_seqs=2,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Gemma 3
|
||
def run_gemma3(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
model_name = "google/gemma-3-4b-it"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=2048,
|
||
max_num_seqs=2,
|
||
mm_processor_kwargs={"do_pan_and_scan": True},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
prompts = [("<bos><start_of_turn>user\n"
|
||
f"<start_of_image>{question}<end_of_turn>\n"
|
||
"<start_of_turn>model\n") for question in questions]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# GLM-4v
|
||
def run_glm4v(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
model_name = "THUDM/glm-4v-9b"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=2048,
|
||
max_num_seqs=2,
|
||
trust_remote_code=True,
|
||
enforce_eager=True,
|
||
hf_overrides={"architectures": ["GLM4VForCausalLM"]},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
prompts = [
|
||
f"<|user|>\n<|begin_of_image|><|endoftext|><|end_of_image|>\
|
||
{question}<|assistant|>" for question in questions
|
||
]
|
||
|
||
stop_token_ids = [151329, 151336, 151338]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
stop_token_ids=stop_token_ids,
|
||
)
|
||
|
||
|
||
# H2OVL-Mississippi
|
||
def run_h2ovl(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
model_name = "h2oai/h2ovl-mississippi-800m"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
trust_remote_code=True,
|
||
max_model_len=8192,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||
trust_remote_code=True)
|
||
messages = [[{
|
||
'role': 'user',
|
||
'content': f"<image>\n{question}"
|
||
}] for question in questions]
|
||
prompts = tokenizer.apply_chat_template(messages,
|
||
tokenize=False,
|
||
add_generation_prompt=True)
|
||
|
||
# Stop tokens for H2OVL-Mississippi
|
||
# https://huggingface.co/h2oai/h2ovl-mississippi-800m
|
||
stop_token_ids = [tokenizer.eos_token_id]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
stop_token_ids=stop_token_ids,
|
||
)
|
||
|
||
|
||
# Idefics3-8B-Llama3
|
||
def run_idefics3(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
model_name = "HuggingFaceM4/Idefics3-8B-Llama3"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=8192,
|
||
max_num_seqs=2,
|
||
enforce_eager=True,
|
||
# if you are running out of memory, you can reduce the "longest_edge".
|
||
# see: https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3#model-optimizations
|
||
mm_processor_kwargs={
|
||
"size": {
|
||
"longest_edge": 3 * 364
|
||
},
|
||
},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
prompts = [(
|
||
f"<|begin_of_text|>User:<image>{question}<end_of_utterance>\nAssistant:"
|
||
) for question in questions]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# SmolVLM2-2.2B-Instruct
|
||
def run_smolvlm(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
model_name = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=8192,
|
||
max_num_seqs=2,
|
||
enforce_eager=True,
|
||
mm_processor_kwargs={
|
||
"max_image_size": {
|
||
"longest_edge": 384
|
||
},
|
||
},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
prompts = [
|
||
(f"<|im_start|>User:<image>{question}<end_of_utterance>\nAssistant:")
|
||
for question in questions
|
||
]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# InternVL
|
||
def run_internvl(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
model_name = "OpenGVLab/InternVL2-2B"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
trust_remote_code=True,
|
||
max_model_len=4096,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||
trust_remote_code=True)
|
||
messages = [[{
|
||
'role': 'user',
|
||
'content': f"<image>\n{question}"
|
||
}] for question in questions]
|
||
prompts = tokenizer.apply_chat_template(messages,
|
||
tokenize=False,
|
||
add_generation_prompt=True)
|
||
|
||
# Stop tokens for InternVL
|
||
# models variants may have different stop tokens
|
||
# please refer to the model card for the correct "stop words":
|
||
# https://huggingface.co/OpenGVLab/InternVL2-2B/blob/main/conversation.py
|
||
stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"]
|
||
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
stop_token_ids=stop_token_ids,
|
||
)
|
||
|
||
|
||
# Kimi-VL
|
||
def run_kimi_vl(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
prompts = [
|
||
"<|im_user|>user<|im_middle|><|media_start|>image<|media_content|>"
|
||
f"<|media_pad|><|media_end|>{question}<|im_end|>"
|
||
"<|im_assistant|>assistant<|im_middle|>" for question in questions
|
||
]
|
||
|
||
engine_args = EngineArgs(
|
||
model="moonshotai/Kimi-VL-A3B-Instruct",
|
||
max_model_len=4096,
|
||
disable_mm_preprocessor_cache=args.disable_mm_preprocessor_cache,
|
||
trust_remote_code=True,
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# LLaVA-1.5
|
||
def run_llava(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
prompts = [
|
||
f"USER: <image>\n{question}\nASSISTANT:" for question in questions
|
||
]
|
||
|
||
engine_args = EngineArgs(
|
||
model="llava-hf/llava-1.5-7b-hf",
|
||
max_model_len=4096,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# LLaVA-1.6/LLaVA-NeXT
|
||
def run_llava_next(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
prompts = [f"[INST] <image>\n{question} [/INST]" for question in questions]
|
||
engine_args = EngineArgs(
|
||
model="llava-hf/llava-v1.6-mistral-7b-hf",
|
||
max_model_len=8192,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# LlaVA-NeXT-Video
|
||
# Currently only support for video input
|
||
def run_llava_next_video(questions: list[str],
|
||
modality: str) -> ModelRequestData:
|
||
assert modality == "video"
|
||
|
||
prompts = [
|
||
f"USER: <video>\n{question} ASSISTANT:" for question in questions
|
||
]
|
||
engine_args = EngineArgs(
|
||
model="llava-hf/LLaVA-NeXT-Video-7B-hf",
|
||
max_model_len=8192,
|
||
max_num_seqs=2,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# LLaVA-OneVision
|
||
def run_llava_onevision(questions: list[str],
|
||
modality: str) -> ModelRequestData:
|
||
|
||
if modality == "video":
|
||
prompts = [
|
||
f"<|im_start|>user <video>\n{question}<|im_end|> \
|
||
<|im_start|>assistant\n" for question in questions
|
||
]
|
||
|
||
elif modality == "image":
|
||
prompts = [
|
||
f"<|im_start|>user <image>\n{question}<|im_end|> \
|
||
<|im_start|>assistant\n" for question in questions
|
||
]
|
||
|
||
engine_args = EngineArgs(
|
||
model="llava-hf/llava-onevision-qwen2-7b-ov-hf",
|
||
max_model_len=16384,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Mantis
|
||
def run_mantis(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n' # noqa: E501
|
||
prompts = [
|
||
llama3_template.format(f"{question}\n<image>")
|
||
for question in questions
|
||
]
|
||
|
||
engine_args = EngineArgs(
|
||
model="TIGER-Lab/Mantis-8B-siglip-llama3",
|
||
max_model_len=4096,
|
||
hf_overrides={"architectures": ["MantisForConditionalGeneration"]},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
stop_token_ids = [128009]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
stop_token_ids=stop_token_ids,
|
||
)
|
||
|
||
|
||
# MiniCPM-V
|
||
def run_minicpmv_base(questions: list[str], modality: str, model_name):
|
||
assert modality in ["image", "video"]
|
||
# If you want to use `MiniCPM-o-2_6` with audio inputs, check `audio_language.py` # noqa
|
||
|
||
# 2.0
|
||
# The official repo doesn't work yet, so we need to use a fork for now
|
||
# For more details, please see: See: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 # noqa
|
||
# model_name = "HwwwH/MiniCPM-V-2"
|
||
|
||
# 2.5
|
||
# model_name = "openbmb/MiniCPM-Llama3-V-2_5"
|
||
|
||
# 2.6
|
||
# model_name = "openbmb/MiniCPM-V-2_6"
|
||
# o2.6
|
||
|
||
# modality supports
|
||
# 2.0: image
|
||
# 2.5: image
|
||
# 2.6: image, video
|
||
# o2.6: image, video, audio
|
||
# model_name = "openbmb/MiniCPM-o-2_6"
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||
trust_remote_code=True)
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
trust_remote_code=True,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
# NOTE The stop_token_ids are different for various versions of MiniCPM-V
|
||
# 2.0
|
||
# stop_token_ids = [tokenizer.eos_id]
|
||
|
||
# 2.5
|
||
# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
|
||
|
||
# 2.6 / o2.6
|
||
stop_tokens = ['<|im_end|>', '<|endoftext|>']
|
||
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
|
||
|
||
modality_placeholder = {
|
||
"image": "(<image>./</image>)",
|
||
"video": "(<video>./</video>)",
|
||
}
|
||
|
||
prompts = [
|
||
tokenizer.apply_chat_template(
|
||
[{
|
||
'role': 'user',
|
||
'content': f"{modality_placeholder[modality]}\n{question}"
|
||
}],
|
||
tokenize=False,
|
||
add_generation_prompt=True) for question in questions
|
||
]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
stop_token_ids=stop_token_ids,
|
||
)
|
||
|
||
|
||
def run_minicpmo(questions: list[str], modality: str) -> ModelRequestData:
|
||
return run_minicpmv_base(questions, modality, "openbmb/MiniCPM-o-2_6")
|
||
|
||
|
||
def run_minicpmv(questions: list[str], modality: str) -> ModelRequestData:
|
||
return run_minicpmv_base(questions, modality, "openbmb/MiniCPM-V-2_6")
|
||
|
||
|
||
# Mistral-3 HF-format
|
||
def run_mistral3(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
model_name = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||
|
||
# NOTE: Need L40 (or equivalent) to avoid OOM
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=8192,
|
||
max_num_seqs=2,
|
||
tensor_parallel_size=2,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
prompts = [f"<s>[INST]{question}\n[IMG][/INST]" for question in questions]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# LLama 3.2
|
||
def run_mllama(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
||
|
||
# Note: The default setting of max_num_seqs (256) and
|
||
# max_model_len (131072) for this model may cause OOM.
|
||
# You may lower either to run this example on lower-end GPUs.
|
||
|
||
# The configuration below has been confirmed to launch on a single L40 GPU.
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=8192,
|
||
max_num_seqs=2,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||
messages = [[{
|
||
"role":
|
||
"user",
|
||
"content": [{
|
||
"type": "image"
|
||
}, {
|
||
"type": "text",
|
||
"text": question
|
||
}]
|
||
}] for question in questions]
|
||
prompts = tokenizer.apply_chat_template(messages,
|
||
add_generation_prompt=True,
|
||
tokenize=False)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
def run_llama4(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
model_name = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=8192,
|
||
max_num_seqs=4,
|
||
tensor_parallel_size=8,
|
||
gpu_memory_utilization=0.4,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||
messages = [[{
|
||
"role":
|
||
"user",
|
||
"content": [{
|
||
"type": "image"
|
||
}, {
|
||
"type": "text",
|
||
"text": f"{question}"
|
||
}]
|
||
}] for question in questions]
|
||
prompts = tokenizer.apply_chat_template(messages,
|
||
add_generation_prompt=True,
|
||
tokenize=False)
|
||
stop_token_ids = None
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
stop_token_ids=stop_token_ids,
|
||
)
|
||
|
||
|
||
# Molmo
|
||
def run_molmo(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
model_name = "allenai/Molmo-7B-D-0924"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
trust_remote_code=True,
|
||
dtype="bfloat16",
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
prompts = [
|
||
f"<|im_start|>user <image>\n{question}<|im_end|> \
|
||
<|im_start|>assistant\n" for question in questions
|
||
]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# NVLM-D
|
||
def run_nvlm_d(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
model_name = "nvidia/NVLM-D-72B"
|
||
|
||
# Adjust this as necessary to fit in GPU
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
trust_remote_code=True,
|
||
max_model_len=4096,
|
||
tensor_parallel_size=4,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||
trust_remote_code=True)
|
||
messages = [[{
|
||
'role': 'user',
|
||
'content': f"<image>\n{question}"
|
||
}] for question in questions]
|
||
prompts = tokenizer.apply_chat_template(messages,
|
||
tokenize=False,
|
||
add_generation_prompt=True)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# PaliGemma
|
||
def run_paligemma(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
# PaliGemma has special prompt format for VQA
|
||
prompts = ["caption en" for _ in questions]
|
||
engine_args = EngineArgs(
|
||
model="google/paligemma-3b-mix-224",
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# PaliGemma 2
|
||
def run_paligemma2(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
# PaliGemma 2 has special prompt format for VQA
|
||
prompts = ["caption en" for _ in questions]
|
||
engine_args = EngineArgs(
|
||
model="google/paligemma2-3b-ft-docci-448",
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Phi-3-Vision
|
||
def run_phi3v(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
prompts = [
|
||
f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n"
|
||
for question in questions
|
||
]
|
||
|
||
# num_crops is an override kwarg to the multimodal image processor;
|
||
# For some models, e.g., Phi-3.5-vision-instruct, it is recommended
|
||
# to use 16 for single frame scenarios, and 4 for multi-frame.
|
||
#
|
||
# Generally speaking, a larger value for num_crops results in more
|
||
# tokens per image instance, because it may scale the image more in
|
||
# the image preprocessing. Some references in the model docs and the
|
||
# formula for image tokens after the preprocessing
|
||
# transform can be found below.
|
||
#
|
||
# https://huggingface.co/microsoft/Phi-3.5-vision-instruct#loading-the-model-locally
|
||
# https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/main/processing_phi3_v.py#L194
|
||
engine_args = EngineArgs(
|
||
model="microsoft/Phi-3.5-vision-instruct",
|
||
trust_remote_code=True,
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
# Note - mm_processor_kwargs can also be passed to generate/chat calls
|
||
mm_processor_kwargs={"num_crops": 16},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Phi-4-multimodal-instruct
|
||
def run_phi4mm(questions: list[str], modality: str) -> ModelRequestData:
|
||
"""
|
||
Phi-4-multimodal-instruct supports both image and audio inputs. Here, we
|
||
show how to process image inputs.
|
||
"""
|
||
assert modality == "image"
|
||
model_path = snapshot_download("microsoft/Phi-4-multimodal-instruct")
|
||
# Since the vision-lora and speech-lora co-exist with the base model,
|
||
# we have to manually specify the path of the lora weights.
|
||
vision_lora_path = os.path.join(model_path, "vision-lora")
|
||
prompts = [
|
||
f"<|user|><|image_1|>{question}<|end|><|assistant|>"
|
||
for question in questions
|
||
]
|
||
engine_args = EngineArgs(
|
||
model=model_path,
|
||
trust_remote_code=True,
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
enable_lora=True,
|
||
max_lora_rank=320,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
lora_requests=[LoRARequest("vision", 1, vision_lora_path)],
|
||
)
|
||
|
||
|
||
# Pixtral HF-format
|
||
def run_pixtral_hf(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
model_name = "mistral-community/pixtral-12b"
|
||
|
||
# NOTE: Need L40 (or equivalent) to avoid OOM
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=6144,
|
||
max_num_seqs=2,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
prompts = [f"<s>[INST]{question}\n[IMG][/INST]" for question in questions]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Qwen
|
||
def run_qwen_vl(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
engine_args = EngineArgs(
|
||
model="Qwen/Qwen-VL",
|
||
trust_remote_code=True,
|
||
max_model_len=1024,
|
||
max_num_seqs=2,
|
||
hf_overrides={"architectures": ["QwenVLForConditionalGeneration"]},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
prompts = [f"{question}Picture 1: <img></img>\n" for question in questions]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Qwen2-VL
|
||
def run_qwen2_vl(questions: list[str], modality: str) -> ModelRequestData:
|
||
|
||
model_name = "Qwen/Qwen2-VL-7B-Instruct"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=4096,
|
||
max_num_seqs=5,
|
||
# Note - mm_processor_kwargs can also be passed to generate/chat calls
|
||
mm_processor_kwargs={
|
||
"min_pixels": 28 * 28,
|
||
"max_pixels": 1280 * 28 * 28,
|
||
},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
if modality == "image":
|
||
placeholder = "<|image_pad|>"
|
||
elif modality == "video":
|
||
placeholder = "<|video_pad|>"
|
||
|
||
prompts = [
|
||
("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
||
f"<|im_start|>user\n<|vision_start|>{placeholder}<|vision_end|>"
|
||
f"{question}<|im_end|>\n"
|
||
"<|im_start|>assistant\n") for question in questions
|
||
]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# Qwen2.5-VL
|
||
def run_qwen2_5_vl(questions: list[str], modality: str) -> ModelRequestData:
|
||
|
||
model_name = "Qwen/Qwen2.5-VL-3B-Instruct"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
max_model_len=4096,
|
||
max_num_seqs=5,
|
||
mm_processor_kwargs={
|
||
"min_pixels": 28 * 28,
|
||
"max_pixels": 1280 * 28 * 28,
|
||
"fps": 1,
|
||
},
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
if modality == "image":
|
||
placeholder = "<|image_pad|>"
|
||
elif modality == "video":
|
||
placeholder = "<|video_pad|>"
|
||
|
||
prompts = [
|
||
("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
||
f"<|im_start|>user\n<|vision_start|>{placeholder}<|vision_end|>"
|
||
f"{question}<|im_end|>\n"
|
||
"<|im_start|>assistant\n") for question in questions
|
||
]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
)
|
||
|
||
|
||
# SkyworkR1V
|
||
def run_skyworkr1v(questions: list[str], modality: str) -> ModelRequestData:
|
||
assert modality == "image"
|
||
|
||
model_name = "Skywork/Skywork-R1V-38B"
|
||
|
||
engine_args = EngineArgs(
|
||
model=model_name,
|
||
trust_remote_code=True,
|
||
max_model_len=4096,
|
||
limit_mm_per_prompt={"image": 1},
|
||
)
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||
trust_remote_code=True)
|
||
messages = [[{
|
||
'role': 'user',
|
||
'content': f"<image>\n{question}"
|
||
}] for question in questions]
|
||
prompts = tokenizer.apply_chat_template(messages,
|
||
tokenize=False,
|
||
add_generation_prompt=True)
|
||
|
||
# Stop tokens for SkyworkR1V
|
||
# https://huggingface.co/Skywork/Skywork-R1V-38B/blob/main/conversation.py
|
||
stop_tokens = ["<|end▁of▁sentence|>", "<|endoftext|>"]
|
||
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
|
||
|
||
return ModelRequestData(
|
||
engine_args=engine_args,
|
||
prompts=prompts,
|
||
stop_token_ids=stop_token_ids,
|
||
)
|
||
|
||
|
||
model_example_map = {
|
||
"aria": run_aria,
|
||
"aya_vision": run_aya_vision,
|
||
"blip-2": run_blip2,
|
||
"chameleon": run_chameleon,
|
||
"deepseek_vl_v2": run_deepseek_vl2,
|
||
"florence2": run_florence2,
|
||
"fuyu": run_fuyu,
|
||
"gemma3": run_gemma3,
|
||
"glm4v": run_glm4v,
|
||
"h2ovl_chat": run_h2ovl,
|
||
"idefics3": run_idefics3,
|
||
"internvl_chat": run_internvl,
|
||
"kimi_vl": run_kimi_vl,
|
||
"llava": run_llava,
|
||
"llava-next": run_llava_next,
|
||
"llava-next-video": run_llava_next_video,
|
||
"llava-onevision": run_llava_onevision,
|
||
"mantis": run_mantis,
|
||
"minicpmo": run_minicpmo,
|
||
"minicpmv": run_minicpmv,
|
||
"mistral3": run_mistral3,
|
||
"mllama": run_mllama,
|
||
"llama4": run_llama4,
|
||
"molmo": run_molmo,
|
||
"NVLM_D": run_nvlm_d,
|
||
"paligemma": run_paligemma,
|
||
"paligemma2": run_paligemma2,
|
||
"phi3_v": run_phi3v,
|
||
"phi4_mm": run_phi4mm,
|
||
"pixtral_hf": run_pixtral_hf,
|
||
"qwen_vl": run_qwen_vl,
|
||
"qwen2_vl": run_qwen2_vl,
|
||
"qwen2_5_vl": run_qwen2_5_vl,
|
||
"skywork_chat": run_skyworkr1v,
|
||
"smolvlm": run_smolvlm,
|
||
}
|
||
|
||
|
||
def get_multi_modal_input(args):
|
||
"""
|
||
return {
|
||
"data": image or video,
|
||
"question": question,
|
||
}
|
||
"""
|
||
if args.modality == "image":
|
||
# Input image and question
|
||
image = ImageAsset("cherry_blossom") \
|
||
.pil_image.convert("RGB")
|
||
img_questions = [
|
||
"What is the content of this image?",
|
||
"Describe the content of this image in detail.",
|
||
"What's in the image?",
|
||
"Where is this image taken?",
|
||
]
|
||
|
||
return {
|
||
"data": image,
|
||
"questions": img_questions,
|
||
}
|
||
|
||
if args.modality == "video":
|
||
# Input video and question
|
||
video = VideoAsset(name="sample_demo_1.mp4",
|
||
num_frames=args.num_frames).np_ndarrays
|
||
vid_questions = ["Why is this video funny?"]
|
||
|
||
return {
|
||
"data": video,
|
||
"questions": vid_questions,
|
||
}
|
||
|
||
msg = f"Modality {args.modality} is not supported."
|
||
raise ValueError(msg)
|
||
|
||
|
||
def apply_image_repeat(image_repeat_prob, num_prompts, data,
|
||
prompts: list[str], modality):
|
||
"""Repeats images with provided probability of "image_repeat_prob".
|
||
Used to simulate hit/miss for the MM preprocessor cache.
|
||
"""
|
||
assert (image_repeat_prob <= 1.0 and image_repeat_prob >= 0)
|
||
no_yes = [0, 1]
|
||
probs = [1.0 - image_repeat_prob, image_repeat_prob]
|
||
|
||
inputs = []
|
||
cur_image = data
|
||
for i in range(num_prompts):
|
||
if image_repeat_prob is not None:
|
||
res = random.choices(no_yes, probs)[0]
|
||
if res == 0:
|
||
# No repeat => Modify one pixel
|
||
cur_image = cur_image.copy()
|
||
new_val = (i // 256 // 256, i // 256, i % 256)
|
||
cur_image.putpixel((0, 0), new_val)
|
||
|
||
inputs.append({
|
||
"prompt": prompts[i % len(prompts)],
|
||
"multi_modal_data": {
|
||
modality: cur_image
|
||
}
|
||
})
|
||
|
||
return inputs
|
||
|
||
|
||
@contextmanager
|
||
def time_counter(enable: bool):
|
||
if enable:
|
||
import time
|
||
start_time = time.time()
|
||
yield
|
||
elapsed_time = time.time() - start_time
|
||
print("-" * 50)
|
||
print("-- generate time = {}".format(elapsed_time))
|
||
print("-" * 50)
|
||
else:
|
||
yield
|
||
|
||
|
||
def parse_args():
|
||
parser = FlexibleArgumentParser(
|
||
description='Demo on using vLLM for offline inference with '
|
||
'vision language models for text generation')
|
||
parser.add_argument('--model-type',
|
||
'-m',
|
||
type=str,
|
||
default="llava",
|
||
choices=model_example_map.keys(),
|
||
help='Huggingface "model_type".')
|
||
parser.add_argument('--num-prompts',
|
||
type=int,
|
||
default=4,
|
||
help='Number of prompts to run.')
|
||
parser.add_argument('--modality',
|
||
type=str,
|
||
default="image",
|
||
choices=['image', 'video'],
|
||
help='Modality of the input.')
|
||
parser.add_argument('--num-frames',
|
||
type=int,
|
||
default=16,
|
||
help='Number of frames to extract from the video.')
|
||
parser.add_argument("--seed",
|
||
type=int,
|
||
default=None,
|
||
help="Set the seed when initializing `vllm.LLM`.")
|
||
|
||
parser.add_argument(
|
||
'--image-repeat-prob',
|
||
type=float,
|
||
default=None,
|
||
help='Simulates the hit-ratio for multi-modal preprocessor cache'
|
||
' (if enabled)')
|
||
|
||
parser.add_argument(
|
||
'--disable-mm-preprocessor-cache',
|
||
action='store_true',
|
||
help='If True, disables caching of multi-modal preprocessor/mapper.')
|
||
|
||
parser.add_argument(
|
||
'--time-generate',
|
||
action='store_true',
|
||
help='If True, then print the total generate() call time')
|
||
|
||
parser.add_argument(
|
||
'--use-different-prompt-per-request',
|
||
action='store_true',
|
||
help='If True, then use different prompt (with the same multi-modal '
|
||
'data) for each request.')
|
||
return parser.parse_args()
|
||
|
||
|
||
def main(args):
|
||
model = args.model_type
|
||
if model not in model_example_map:
|
||
raise ValueError(f"Model type {model} is not supported.")
|
||
|
||
modality = args.modality
|
||
mm_input = get_multi_modal_input(args)
|
||
data = mm_input["data"]
|
||
questions = mm_input["questions"]
|
||
|
||
req_data = model_example_map[model](questions, modality)
|
||
|
||
# Disable other modalities to save memory
|
||
default_limits = {"image": 0, "video": 0, "audio": 0}
|
||
req_data.engine_args.limit_mm_per_prompt = default_limits | dict(
|
||
req_data.engine_args.limit_mm_per_prompt or {})
|
||
|
||
engine_args = asdict(req_data.engine_args) | {
|
||
"seed": args.seed,
|
||
"disable_mm_preprocessor_cache": args.disable_mm_preprocessor_cache,
|
||
}
|
||
llm = LLM(**engine_args)
|
||
|
||
# Don't want to check the flag multiple times, so just hijack `prompts`.
|
||
prompts = req_data.prompts if args.use_different_prompt_per_request else [
|
||
req_data.prompts[0]
|
||
]
|
||
|
||
# We set temperature to 0.2 so that outputs can be different
|
||
# even when all prompts are identical when running batch inference.
|
||
sampling_params = SamplingParams(temperature=0.2,
|
||
max_tokens=64,
|
||
stop_token_ids=req_data.stop_token_ids)
|
||
|
||
assert args.num_prompts > 0
|
||
if args.num_prompts == 1:
|
||
# Single inference
|
||
inputs = {
|
||
"prompt": prompts[0],
|
||
"multi_modal_data": {
|
||
modality: data
|
||
},
|
||
}
|
||
else:
|
||
# Batch inference
|
||
if args.image_repeat_prob is not None:
|
||
# Repeat images with specified probability of "image_repeat_prob"
|
||
inputs = apply_image_repeat(args.image_repeat_prob,
|
||
args.num_prompts, data, prompts,
|
||
modality)
|
||
else:
|
||
# Use the same image for all prompts
|
||
inputs = [{
|
||
"prompt": prompts[i % len(prompts)],
|
||
"multi_modal_data": {
|
||
modality: data
|
||
},
|
||
} for i in range(args.num_prompts)]
|
||
|
||
# Add LoRA request if applicable
|
||
lora_request = (req_data.lora_requests *
|
||
args.num_prompts if req_data.lora_requests else None)
|
||
|
||
with time_counter(args.time_generate):
|
||
outputs = llm.generate(
|
||
inputs,
|
||
sampling_params=sampling_params,
|
||
lora_request=lora_request,
|
||
)
|
||
|
||
print("-" * 50)
|
||
for o in outputs:
|
||
generated_text = o.outputs[0].text
|
||
print(generated_text)
|
||
print("-" * 50)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
args = parse_args()
|
||
main(args)
|