
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
134 lines
4.3 KiB
Python
134 lines
4.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""
|
|
This file demonstrates the example usage of disaggregated prefilling
|
|
with LMCache.
|
|
We will launch 2 vllm instances (GPU 0 for prefill and GPU 1 for decode),
|
|
and launch an additional LMCache server.
|
|
KV cache is transferred in the following manner:
|
|
vLLM prefill node -> LMCache server -> vLLM decode node.
|
|
|
|
Note that `pip install lmcache` is needed to run this example.
|
|
Learn more about LMCache in https://github.com/LMCache/LMCache.
|
|
"""
|
|
import os
|
|
import subprocess
|
|
import time
|
|
from multiprocessing import Event, Process
|
|
|
|
from lmcache.experimental.cache_engine import LMCacheEngineBuilder
|
|
from lmcache.integration.vllm.utils import ENGINE_NAME
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.config import KVTransferConfig
|
|
|
|
# LMCache-related environment variables
|
|
# The port to start LMCache server
|
|
port = 8100
|
|
# Use experimental features in LMCache
|
|
os.environ["LMCACHE_USE_EXPERIMENTAL"] = "True"
|
|
# LMCache is set to use 256 tokens per chunk
|
|
os.environ["LMCACHE_CHUNK_SIZE"] = "256"
|
|
# Disable local CPU backend in LMCache
|
|
os.environ["LMCACHE_LOCAL_CPU"] = "False"
|
|
# Set local CPU memory buffer limit to 5.0 GB
|
|
os.environ["LMCACHE_MAX_LOCAL_CPU_SIZE"] = "5.0"
|
|
# Set the remote URL for LMCache server
|
|
os.environ["LMCACHE_REMOTE_URL"] = f"lm://localhost:{port}"
|
|
# Set the serializer/deserializer between vllm and LMCache server
|
|
# `naive` indicates using raw bytes of the tensor without any compression
|
|
os.environ["LMCACHE_REMOTE_SERDE"] = "naive"
|
|
|
|
prompts = [
|
|
"Hello, how are you?" * 1000,
|
|
]
|
|
|
|
|
|
def run_prefill(prefill_done, prompts):
|
|
# We use GPU 0 for prefill node.
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
|
|
|
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=1)
|
|
|
|
ktc = KVTransferConfig.from_cli(
|
|
'{"kv_connector":"LMCacheConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2}'
|
|
)
|
|
# Set GPU memory utilization to 0.8 for an A40 GPU with 40GB
|
|
# memory. Reduce the value if your GPU has less memory.
|
|
llm = LLM(model="mistralai/Mistral-7B-Instruct-v0.2",
|
|
kv_transfer_config=ktc,
|
|
max_model_len=8000,
|
|
gpu_memory_utilization=0.8,
|
|
enforce_eager=True)
|
|
|
|
#llm.generate(prompts, sampling_params)
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
for output in outputs:
|
|
generated_text = output.outputs[0].text
|
|
print(f"Generated text: {generated_text!r}")
|
|
print("Prefill node is finished.")
|
|
prefill_done.set()
|
|
|
|
# Clean up lmcache backend
|
|
LMCacheEngineBuilder.destroy(ENGINE_NAME)
|
|
|
|
|
|
def run_decode(prefill_done, prompts, timeout=1):
|
|
# We use GPU 1 for decode node.
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
|
|
|
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=10)
|
|
|
|
ktc = KVTransferConfig.from_cli(
|
|
'{"kv_connector":"LMCacheConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2}'
|
|
)
|
|
# Set GPU memory utilization to 0.8 for an A40 GPU with 40GB
|
|
# of memory. Reduce the value if your GPU has less memory.
|
|
llm = LLM(model="mistralai/Mistral-7B-Instruct-v0.2",
|
|
kv_transfer_config=ktc,
|
|
max_model_len=8000,
|
|
gpu_memory_utilization=0.8,
|
|
enforce_eager=True)
|
|
|
|
print("Waiting for prefill node to finish...")
|
|
prefill_done.wait()
|
|
time.sleep(timeout)
|
|
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
for output in outputs:
|
|
generated_text = output.outputs[0].text
|
|
print(f"Generated text: {generated_text!r}")
|
|
|
|
# Clean up lmcache backend
|
|
LMCacheEngineBuilder.destroy(ENGINE_NAME)
|
|
|
|
|
|
def run_lmcache_server(port):
|
|
server_proc = subprocess.Popen([
|
|
"python", "-m", "lmcache.experimental.server", "localhost",
|
|
str(port)
|
|
])
|
|
return server_proc
|
|
|
|
|
|
def main():
|
|
prefill_done = Event()
|
|
prefill_process = Process(target=run_prefill, args=(prefill_done, prompts))
|
|
decode_process = Process(target=run_decode, args=(prefill_done, prompts))
|
|
lmcache_server_process = run_lmcache_server(port)
|
|
|
|
# Start prefill node
|
|
prefill_process.start()
|
|
|
|
# Start decode node
|
|
decode_process.start()
|
|
|
|
# Clean up the processes
|
|
decode_process.join()
|
|
prefill_process.terminate()
|
|
lmcache_server_process.terminate()
|
|
lmcache_server_process.wait()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|