vllm/csrc/layernorm_quant_kernels.cu
Jeff Daily a1c8f3796c
dynamic distpatch of fp8 kernels (#14245)
Signed-off-by: Jeff Daily <jeff.daily@amd.com>
2025-03-11 10:54:56 -04:00

243 lines
9.9 KiB
Plaintext

/*
* This file contains the CUDA kernels for the fused quantized layernorm.
* The kernels correspond to the kernels in layernorm_kernels.cu, except they
* also produce quantized output directly.
* Currently, only static fp8 quantization is supported.
*/
#include "type_convert.cuh"
#include "quantization/fp8/common.cuh"
#include "dispatch_utils.h"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
#ifndef USE_ROCM
#include <cub/cub.cuh>
#else
#include <hipcub/hipcub.hpp>
#endif
namespace vllm {
// TODO(woosuk): Further optimize this kernel.
template <typename scalar_t, typename fp8_type>
__global__ void rms_norm_static_fp8_quant_kernel(
fp8_type* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float* __restrict__ scale, // [1]
const float epsilon, const int num_tokens, const int hidden_size) {
__shared__ float s_variance;
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
const float x = (float)input[blockIdx.x * hidden_size + idx];
variance += x * x;
}
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
variance = BlockReduce(reduceStore).Reduce(variance, cub::Sum{}, blockDim.x);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
// invert scale to avoid division
float const scale_inv = 1.0f / *scale;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)input[blockIdx.x * hidden_size + idx];
float const out_norm = ((scalar_t)(x * s_variance)) * weight[idx];
out[blockIdx.x * hidden_size + idx] =
scaled_fp8_conversion<true, fp8_type>(out_norm, scale_inv);
}
}
/* Function specialization in the case of FP16/BF16 tensors.
Additional optimizations we can make in this case are
packed and vectorized operations, which help with the
memory latency bottleneck. */
template <typename scalar_t, int width, typename fp8_type>
__global__ std::enable_if_t<(width > 0) && _typeConvert<scalar_t>::exists>
fused_add_rms_norm_static_fp8_quant_kernel(
fp8_type* __restrict__ out, // [..., hidden_size]
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float* __restrict__ scale, // [1]
const float epsilon, const int num_tokens, const int hidden_size) {
// Sanity checks on our vector struct and type-punned pointer arithmetic
static_assert(std::is_pod_v<_f16Vec<scalar_t, width>>);
static_assert(sizeof(_f16Vec<scalar_t, width>) == sizeof(scalar_t) * width);
const int vec_hidden_size = hidden_size / width;
__shared__ float s_variance;
float variance = 0.0f;
/* These and the argument pointers are all declared `restrict` as they are
not aliased in practice. Argument pointers should not be dereferenced
in this kernel as that would be undefined behavior */
auto* __restrict__ input_v =
reinterpret_cast<_f16Vec<scalar_t, width>*>(input);
auto* __restrict__ residual_v =
reinterpret_cast<_f16Vec<scalar_t, width>*>(residual);
auto* __restrict__ weight_v =
reinterpret_cast<const _f16Vec<scalar_t, width>*>(weight);
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16Vec<scalar_t, width> temp = input_v[id];
temp += residual_v[id];
variance += temp.sum_squares();
residual_v[id] = temp;
}
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
variance = BlockReduce(reduceStore).Reduce(variance, cub::Sum{}, blockDim.x);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
// invert scale to avoid division
float const scale_inv = 1.0f / *scale;
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16Vec<scalar_t, width> temp = residual_v[id];
temp *= s_variance;
temp *= weight_v[idx];
#pragma unroll
for (int i = 0; i < width; ++i) {
out[id * width + i] =
scaled_fp8_conversion<true, fp8_type>(float(temp.data[i]), scale_inv);
}
}
}
/* Generic fused_add_rms_norm_kernel
The width field is not used here but necessary for other specializations.
*/
template <typename scalar_t, int width, typename fp8_type>
__global__ std::enable_if_t<(width == 0) || !_typeConvert<scalar_t>::exists>
fused_add_rms_norm_static_fp8_quant_kernel(
fp8_type* __restrict__ out, // [..., hidden_size]
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float* __restrict__ scale, // [1]
const float epsilon, const int num_tokens, const int hidden_size) {
__shared__ float s_variance;
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
scalar_t z = input[blockIdx.x * hidden_size + idx];
z += residual[blockIdx.x * hidden_size + idx];
float x = (float)z;
variance += x * x;
residual[blockIdx.x * hidden_size + idx] = z;
}
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
variance = BlockReduce(reduceStore).Reduce(variance, cub::Sum{}, blockDim.x);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
// invert scale to avoid division
float const scale_inv = 1.0f / *scale;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)residual[blockIdx.x * hidden_size + idx];
float const out_norm = ((scalar_t)(x * s_variance)) * weight[idx];
out[blockIdx.x * hidden_size + idx] =
scaled_fp8_conversion<true, fp8_type>(out_norm, scale_inv);
}
}
} // namespace vllm
void rms_norm_static_fp8_quant(torch::Tensor& out, // [..., hidden_size]
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
torch::Tensor& scale, // [1]
double epsilon) {
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "rms_norm_kernel_scalar_type", [&] {
VLLM_DISPATCH_FP8_TYPES(
out.scalar_type(), "rms_norm_kernel_fp8_type", [&] {
vllm::rms_norm_static_fp8_quant_kernel<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(
out.data_ptr<fp8_t>(), input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(), scale.data_ptr<float>(),
epsilon, num_tokens, hidden_size);
});
});
}
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), "fused_add_rms_norm_kernel_scalar_type", [&] { \
VLLM_DISPATCH_FP8_TYPES( \
out.scalar_type(), "fused_add_rms_norm_kernel_fp8_type", [&] { \
vllm::fused_add_rms_norm_static_fp8_quant_kernel<scalar_t, \
width, fp8_t> \
<<<grid, block, 0, stream>>>( \
out.data_ptr<fp8_t>(), input.data_ptr<scalar_t>(), \
residual.data_ptr<scalar_t>(), \
weight.data_ptr<scalar_t>(), scale.data_ptr<float>(), \
epsilon, num_tokens, hidden_size); \
}); \
});
void fused_add_rms_norm_static_fp8_quant(
torch::Tensor& out, // [..., hidden_size],
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& residual, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
torch::Tensor& scale, // [1]
double epsilon) {
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
/* This kernel is memory-latency bound in many scenarios.
When num_tokens is large, a smaller block size allows
for increased block occupancy on CUs and better latency
hiding on global mem ops. */
const int max_block_size = (num_tokens < 256) ? 1024 : 256;
dim3 block(std::min(hidden_size, max_block_size));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
/*If the tensor types are FP16/BF16, try to use the optimized kernel
with packed + vectorized ops.
Max optimization is achieved with a width-8 vector of FP16/BF16s
since we can load at most 128 bits at once in a global memory op.
However, this requires each tensor's data to be aligned to 16
bytes.
*/
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto res_ptr = reinterpret_cast<std::uintptr_t>(residual.data_ptr());
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned =
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);
}
}