vllm/tests/samplers/test_beam_search.py
SangBin Cho 26422e477b
[Test] Make model tests run again and remove --forked from pytest (#3631)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-03-28 21:06:40 -07:00

55 lines
1.7 KiB
Python

"""Compare the outputs of HF and vLLM when using beam search.
Run `pytest tests/samplers/test_beam_search.py`.
"""
import gc
import pytest
import torch
# FIXME(zhuohan): The test can not pass if we:
# 1. Increase max_tokens to 256.
# 2. Increase beam_width to 8.
# 3. Use the model "huggyllama/llama-7b".
MAX_TOKENS = [128]
BEAM_WIDTHS = [4]
MODELS = ["facebook/opt-125m"]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", MAX_TOKENS)
@pytest.mark.parametrize("beam_width", BEAM_WIDTHS)
def test_beam_search_single_input(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
beam_width: int,
) -> None:
example_prompts = example_prompts[:1]
hf_model = hf_runner(model, dtype=dtype)
hf_outputs = hf_model.generate_beam_search(example_prompts, beam_width,
max_tokens)
del hf_model
vllm_model = vllm_runner(model, dtype=dtype)
vllm_outputs = vllm_model.generate_beam_search(example_prompts, beam_width,
max_tokens)
del vllm_model
# NOTE(woosuk): For some reason, the following GC is required to avoid
# GPU OOM errors in the following tests using `vllm_runner`.
gc.collect()
torch.cuda.empty_cache()
for i in range(len(example_prompts)):
hf_output_ids, _ = hf_outputs[i]
vllm_output_ids, _ = vllm_outputs[i]
assert len(hf_output_ids) == len(vllm_output_ids)
for j in range(len(hf_output_ids)):
assert hf_output_ids[j] == vllm_output_ids[j], (
f"Test{i} output{j}:\nHF: {hf_output_ids}\n"
f"vLLM: {vllm_output_ids}")