vllm/tests/models/test_llava.py
SangBin Cho 26422e477b
[Test] Make model tests run again and remove --forked from pytest (#3631)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-03-28 21:06:40 -07:00

108 lines
4.3 KiB
Python

import gc
from dataclasses import fields
from enum import Enum
from typing import Dict, List, Tuple
import pytest
import torch
from transformers import AutoTokenizer
from vllm.config import VisionLanguageConfig
model_and_vl_config = [
("llava-hf/llava-1.5-7b-hf",
VisionLanguageConfig(
image_input_type=VisionLanguageConfig.ImageInputType.PIXEL_VALUES,
image_feature_size=576,
image_token_id=32000,
image_input_shape=(1, 3, 336, 336))),
("llava-hf/llava-1.5-7b-hf",
VisionLanguageConfig(
image_input_type=VisionLanguageConfig.ImageInputType.IMAGE_FEATURES,
image_feature_size=576,
image_token_id=32000,
image_input_shape=(1, 576, 1024)))
]
def as_dict(vision_language_config: VisionLanguageConfig) -> Dict:
"""Flatten vision language config to pure args.
Compatible with what llm entrypoint expects.
"""
result = {}
for field in fields(vision_language_config):
value = getattr(vision_language_config, field.name)
if isinstance(value, Enum):
result[field.name] = value.name.lower()
elif isinstance(value, tuple):
result[field.name] = ",".join([str(item) for item in value])
else:
result[field.name] = value
return result
def sanitize_vllm_output(vllm_output: Tuple[List[int], str],
vision_language_config: VisionLanguageConfig,
model_id: str):
"""Sanitize vllm output to be comparable with hf output.
The function reduces `input_ids` from 1, 32000, 32000, ..., 32000,
x1, x2, x3 ... to 1, 32000, x1, x2, x3 ...
It also reduces `output_str` from "<image><image>bla" to "bla".
"""
tokenizer = AutoTokenizer.from_pretrained(model_id)
image_token_str = tokenizer.decode(vision_language_config.image_token_id)
image_token_str_len = len(image_token_str)
input_ids, output_str = vllm_output
sanitized_input_ids = input_ids[0:2] + input_ids[2 + vision_language_config
.image_feature_size - 1:]
sanitzied_output_str = output_str[vision_language_config.
image_feature_size *
image_token_str_len:]
return sanitized_input_ids, sanitzied_output_str
@pytest.mark.parametrize("worker_use_ray", [False])
@pytest.mark.parametrize("model_and_config", model_and_vl_config)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
def test_models(hf_runner, vllm_runner, hf_image_prompts, hf_images,
vllm_image_prompts, vllm_images, model_and_config: tuple,
dtype: str, max_tokens: int, worker_use_ray: bool) -> None:
"""Inference result should be the same between hf and vllm.
All the image fixtures for the test is under tests/images.
For huggingface runner, we provide the raw images as input.
For vllm runner, we provide image tensors and corresponding
vision language config as input.
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
model_id, vision_language_config = model_and_config
hf_model = hf_runner(model_id, dtype=dtype)
hf_outputs = hf_model.generate_greedy(hf_image_prompts,
max_tokens,
images=hf_images)
del hf_model
vllm_model = vllm_runner(model_id,
dtype=dtype,
worker_use_ray=worker_use_ray,
**as_dict(vision_language_config))
vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts,
max_tokens,
images=vllm_images)
del vllm_model
gc.collect()
torch.cuda.empty_cache()
for i in range(len(hf_image_prompts)):
hf_output_ids, hf_output_str = hf_outputs[i]
vllm_output_ids, vllm_output_str = sanitize_vllm_output(
vllm_outputs[i], vision_language_config, model_id)
assert hf_output_str == vllm_output_str, (
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
assert hf_output_ids == vllm_output_ids, (
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")