
Signed-off-by: Nick Hill <nhill@redhat.com> Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
136 lines
5.0 KiB
Python
136 lines
5.0 KiB
Python
import asyncio
|
|
from contextlib import ExitStack
|
|
from typing import List, Tuple
|
|
|
|
import pytest
|
|
|
|
from vllm import SamplingParams
|
|
from vllm.engine.arg_utils import AsyncEngineArgs
|
|
from vllm.platforms import current_platform
|
|
from vllm.sampling_params import RequestOutputKind
|
|
from vllm.v1.engine.async_llm import AsyncLLM
|
|
|
|
if not current_platform.is_cuda():
|
|
pytest.skip(reason="V1 currently only supported on CUDA.",
|
|
allow_module_level=True)
|
|
|
|
ENGINE_ARGS = AsyncEngineArgs(model="meta-llama/Llama-3.2-1B",
|
|
enforce_eager=True,
|
|
disable_log_requests=True)
|
|
|
|
|
|
async def generate(engine: AsyncLLM, request_id: str,
|
|
output_kind: RequestOutputKind,
|
|
max_tokens: int) -> Tuple[int, str]:
|
|
count = 0
|
|
sampling_params = SamplingParams(max_tokens=max_tokens,
|
|
output_kind=output_kind,
|
|
temperature=0)
|
|
async for out in engine.generate(request_id=request_id,
|
|
prompt="Hello my name is Robert and",
|
|
sampling_params=sampling_params):
|
|
|
|
num_tokens = len(out.outputs[0].token_ids)
|
|
if output_kind == RequestOutputKind.DELTA:
|
|
count += num_tokens
|
|
else:
|
|
count = num_tokens
|
|
|
|
await asyncio.sleep(0.)
|
|
|
|
return count, request_id
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"output_kind", [RequestOutputKind.DELTA, RequestOutputKind.FINAL_ONLY])
|
|
@pytest.mark.asyncio
|
|
async def test_load(monkeypatch, output_kind: RequestOutputKind):
|
|
# TODO(rickyx): Remove monkeypatch once we have a better way to test V1
|
|
# so that in the future when we switch, we don't have to change all the
|
|
# tests.
|
|
with monkeypatch.context() as m, ExitStack() as after:
|
|
m.setenv("VLLM_USE_V1", "1")
|
|
|
|
engine = AsyncLLM.from_engine_args(ENGINE_ARGS)
|
|
after.callback(engine.shutdown)
|
|
|
|
NUM_REQUESTS = 10000
|
|
NUM_EXPECTED_TOKENS = 10
|
|
|
|
request_ids = [f"request-{i}" for i in range(NUM_REQUESTS)]
|
|
|
|
# Create concurrent requests.
|
|
tasks = []
|
|
for request_id in request_ids:
|
|
tasks.append(
|
|
asyncio.create_task(
|
|
generate(engine, request_id, output_kind,
|
|
NUM_EXPECTED_TOKENS)))
|
|
|
|
# Confirm that we got all the EXPECTED tokens from the requests.
|
|
done, pending = await asyncio.wait(tasks,
|
|
return_when=asyncio.FIRST_EXCEPTION)
|
|
for task in pending:
|
|
task.cancel()
|
|
for task in done:
|
|
num_generated_tokens, request_id = await task
|
|
assert num_generated_tokens == NUM_EXPECTED_TOKENS, (
|
|
f"{request_id} generated {num_generated_tokens} but "
|
|
f"expected {NUM_EXPECTED_TOKENS}")
|
|
|
|
assert not engine.output_processor.has_unfinished_requests()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"output_kind", [RequestOutputKind.DELTA, RequestOutputKind.FINAL_ONLY])
|
|
@pytest.mark.asyncio
|
|
async def test_abort(monkeypatch, output_kind: RequestOutputKind):
|
|
|
|
with monkeypatch.context() as m, ExitStack() as after:
|
|
m.setenv("VLLM_USE_V1", "1")
|
|
|
|
engine = AsyncLLM.from_engine_args(ENGINE_ARGS)
|
|
after.callback(engine.shutdown)
|
|
|
|
NUM_REQUESTS = 100
|
|
NUM_EXPECTED_TOKENS = 100
|
|
REQUEST_IDS_TO_ABORT = range(1, 100, 10)
|
|
|
|
request_ids = [f"request-{i}" for i in range(NUM_REQUESTS)]
|
|
|
|
# Create concurrent requests.
|
|
tasks: List[asyncio.Task] = []
|
|
for request_id in request_ids:
|
|
tasks.append(
|
|
asyncio.create_task(
|
|
generate(engine, request_id, output_kind,
|
|
NUM_EXPECTED_TOKENS)))
|
|
|
|
# API server cancels requests when they disconnect.
|
|
for idx in REQUEST_IDS_TO_ABORT:
|
|
tasks[idx].cancel()
|
|
await asyncio.sleep(0.1)
|
|
|
|
# Confirm the other requests are okay.
|
|
for idx, task in enumerate(tasks):
|
|
# Confirm that it was actually canceled.
|
|
if idx in REQUEST_IDS_TO_ABORT:
|
|
with pytest.raises(asyncio.CancelledError):
|
|
await task
|
|
else:
|
|
# Otherwise, make sure the request was not impacted.
|
|
num_generated_tokens, request_id = await task
|
|
assert num_generated_tokens == NUM_EXPECTED_TOKENS, (
|
|
f"{request_id} generated {num_generated_tokens} but "
|
|
f"expected {NUM_EXPECTED_TOKENS}")
|
|
|
|
assert not engine.output_processor.has_unfinished_requests()
|
|
|
|
# Confirm we can do another generation.
|
|
request_id = f"request-{REQUEST_IDS_TO_ABORT[0]}"
|
|
task = asyncio.create_task(
|
|
generate(engine, request_id, output_kind, NUM_EXPECTED_TOKENS))
|
|
num_generated_tokens, request_id = await task
|
|
assert num_generated_tokens == NUM_EXPECTED_TOKENS
|
|
assert not engine.output_processor.has_unfinished_requests()
|