453 lines
16 KiB
Python
453 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import time
|
|
|
|
import pytest
|
|
import ray
|
|
from prometheus_client import REGISTRY
|
|
|
|
import vllm.envs as envs
|
|
from vllm import EngineArgs, LLMEngine
|
|
from vllm.distributed import cleanup_dist_env_and_memory
|
|
from vllm.engine.arg_utils import AsyncEngineArgs
|
|
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
|
from vllm.engine.metrics import RayPrometheusStatLogger
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.test_utils import MODEL_WEIGHTS_S3_BUCKET
|
|
|
|
|
|
@pytest.fixture(scope="function", autouse=True)
|
|
def use_v0_only(monkeypatch):
|
|
"""
|
|
This module tests V0 internals, so set VLLM_USE_V1=0.
|
|
"""
|
|
monkeypatch.setenv('VLLM_USE_V1', '0')
|
|
|
|
|
|
MODELS = [
|
|
"distilbert/distilgpt2",
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
def test_metric_counter_prompt_tokens(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
) -> None:
|
|
with vllm_runner(model,
|
|
dtype=dtype,
|
|
disable_log_stats=False,
|
|
gpu_memory_utilization=0.4) as vllm_model:
|
|
tokenizer = vllm_model.model.get_tokenizer()
|
|
prompt_token_counts = [
|
|
len(tokenizer.encode(p)) for p in example_prompts
|
|
]
|
|
# This test needs at least 2 prompts in a batch of different lengths to
|
|
# verify their token count is correct despite padding.
|
|
assert len(example_prompts) > 1, "at least 2 prompts are required"
|
|
assert prompt_token_counts[0] != prompt_token_counts[1], (
|
|
"prompts of different lengths are required")
|
|
vllm_prompt_token_count = sum(prompt_token_counts)
|
|
|
|
_ = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
stat_logger = vllm_model.model.llm_engine.stat_loggers['prometheus']
|
|
metric_count = stat_logger.metrics.counter_prompt_tokens.labels(
|
|
**stat_logger.labels)._value.get()
|
|
|
|
assert vllm_prompt_token_count == metric_count, (
|
|
f"prompt token count: {vllm_prompt_token_count!r}\n"
|
|
f"metric: {metric_count!r}")
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
def test_metric_counter_generation_tokens(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
) -> None:
|
|
with vllm_runner(model,
|
|
dtype=dtype,
|
|
disable_log_stats=False,
|
|
gpu_memory_utilization=0.4) as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
tokenizer = vllm_model.model.get_tokenizer()
|
|
stat_logger = vllm_model.model.llm_engine.stat_loggers['prometheus']
|
|
metric_count = stat_logger.metrics.counter_generation_tokens.labels(
|
|
**stat_logger.labels)._value.get()
|
|
vllm_generation_count = 0
|
|
for i in range(len(example_prompts)):
|
|
vllm_output_ids, vllm_output_str = vllm_outputs[i]
|
|
prompt_ids = tokenizer.encode(example_prompts[i])
|
|
# vllm_output_ids contains both prompt tokens and generation tokens.
|
|
# We're interested only in the count of the generation tokens.
|
|
vllm_generation_count += len(vllm_output_ids) - len(prompt_ids)
|
|
|
|
assert vllm_generation_count == metric_count, (
|
|
f"generation token count: {vllm_generation_count!r}\n"
|
|
f"metric: {metric_count!r}")
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("max_tokens", [128, 129])
|
|
@pytest.mark.parametrize("disable_async_output_proc", [True, False])
|
|
def test_metric_counter_generation_tokens_multi_step(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
max_tokens: int,
|
|
disable_async_output_proc: bool,
|
|
) -> None:
|
|
num_scheduler_steps = 8
|
|
with vllm_runner(
|
|
model,
|
|
disable_log_stats=False,
|
|
gpu_memory_utilization=0.4,
|
|
num_scheduler_steps=num_scheduler_steps,
|
|
disable_async_output_proc=disable_async_output_proc,
|
|
) as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
tokenizer = vllm_model.model.get_tokenizer()
|
|
stat_logger = vllm_model.model.llm_engine.stat_loggers['prometheus']
|
|
metric_count = stat_logger.metrics.counter_generation_tokens.labels(
|
|
**stat_logger.labels)._value.get()
|
|
vllm_generation_count = 0
|
|
for i in range(len(example_prompts)):
|
|
vllm_output_ids, vllm_output_str = vllm_outputs[i]
|
|
prompt_ids = tokenizer.encode(example_prompts[i])
|
|
# vllm_output_ids contains both prompt tokens and generation tokens.
|
|
# We're interested only in the count of the generation tokens.
|
|
vllm_generation_count += len(vllm_output_ids) - len(prompt_ids)
|
|
|
|
# The multi-step scheduling will continue to execute forward even when
|
|
# encountering EOS, leading to slightly imprecise metrics.
|
|
assert abs(vllm_generation_count - metric_count) <\
|
|
len(example_prompts) * num_scheduler_steps, \
|
|
(f"generation token count: {vllm_generation_count!r}\n"
|
|
f"metric: {metric_count!r}")
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
@pytest.mark.parametrize(
|
|
"served_model_name",
|
|
[None, [], ["ModelName0"], ["ModelName0", "ModelName1", "ModelName2"]])
|
|
def test_metric_set_tag_model_name(vllm_runner, model: str, dtype: str,
|
|
served_model_name: list[str]) -> None:
|
|
with vllm_runner(model,
|
|
dtype=dtype,
|
|
disable_log_stats=False,
|
|
gpu_memory_utilization=0.3,
|
|
served_model_name=served_model_name) as vllm_model:
|
|
stat_logger = vllm_model.model.llm_engine.stat_loggers['prometheus']
|
|
metrics_tag_content = stat_logger.labels["model_name"]
|
|
|
|
if envs.VLLM_CI_USE_S3:
|
|
model = f"{MODEL_WEIGHTS_S3_BUCKET}/{model}"
|
|
if served_model_name is None or served_model_name == []:
|
|
assert metrics_tag_content == model, (
|
|
f"Metrics tag model_name is wrong! expect: {model!r}\n"
|
|
f"actual: {metrics_tag_content!r}")
|
|
else:
|
|
assert metrics_tag_content == served_model_name[0], (
|
|
f"Metrics tag model_name is wrong! expect: "
|
|
f"{served_model_name[0]!r}\n"
|
|
f"actual: {metrics_tag_content!r}")
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [4])
|
|
@pytest.mark.parametrize("disable_log_stats", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_async_engine_log_metrics_regression(
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
disable_log_stats: bool,
|
|
) -> None:
|
|
"""
|
|
Regression test ensuring async engine generates metrics
|
|
when disable_log_stats=False
|
|
(see: https://github.com/vllm-project/vllm/pull/4150#pullrequestreview-2008176678)
|
|
"""
|
|
engine_args = AsyncEngineArgs(
|
|
model=model,
|
|
dtype=dtype,
|
|
disable_log_stats=disable_log_stats,
|
|
)
|
|
async_engine = AsyncLLMEngine.from_engine_args(engine_args)
|
|
for i, prompt in enumerate(example_prompts):
|
|
results = async_engine.generate(
|
|
prompt,
|
|
SamplingParams(max_tokens=max_tokens),
|
|
f"request-id-{i}",
|
|
)
|
|
# Exhaust the async iterator to make the async engine work
|
|
async for _ in results:
|
|
pass
|
|
|
|
assert_metrics(model, async_engine.engine, disable_log_stats,
|
|
len(example_prompts))
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [4])
|
|
@pytest.mark.parametrize("disable_log_stats", [True, False])
|
|
def test_engine_log_metrics_regression(
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
disable_log_stats: bool,
|
|
) -> None:
|
|
engine_args = EngineArgs(
|
|
model=model,
|
|
dtype=dtype,
|
|
disable_log_stats=disable_log_stats,
|
|
)
|
|
engine = LLMEngine.from_engine_args(engine_args)
|
|
for i, prompt in enumerate(example_prompts):
|
|
engine.add_request(
|
|
f"request-id-{i}",
|
|
prompt,
|
|
SamplingParams(max_tokens=max_tokens),
|
|
)
|
|
while engine.has_unfinished_requests():
|
|
engine.step()
|
|
|
|
if envs.VLLM_CI_USE_S3:
|
|
model = f"{MODEL_WEIGHTS_S3_BUCKET}/{model}"
|
|
assert_metrics(model, engine, disable_log_stats, len(example_prompts))
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [10])
|
|
def test_metric_spec_decode(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
) -> None:
|
|
k = 5
|
|
|
|
with vllm_runner(
|
|
model,
|
|
dtype=dtype,
|
|
disable_log_stats=False,
|
|
gpu_memory_utilization=0.4,
|
|
speculative_config={
|
|
"model": model,
|
|
"num_speculative_tokens": k,
|
|
},
|
|
) as vllm_model:
|
|
|
|
# Force log interval to be 0 to catch all metrics.
|
|
stat_logger = vllm_model.model.llm_engine.stat_loggers['prometheus']
|
|
stat_logger.local_interval = 0
|
|
|
|
# Note that the purpose of this test is to verify spec decode
|
|
# metrics instead of functional correctness, so the expected values
|
|
# are intended to be loose.
|
|
metric_name_to_expected_fn = {
|
|
"gauge_spec_decode_draft_acceptance_rate": lambda v: 0 <= v <= 1,
|
|
"gauge_spec_decode_efficiency": lambda v: 0 <= v <= 1,
|
|
"counter_spec_decode_num_accepted_tokens": lambda v: 0 <= v <= k,
|
|
"counter_spec_decode_num_draft_tokens": lambda v: v == k,
|
|
"counter_spec_decode_num_emitted_tokens":
|
|
lambda v: 0 <= v <= k + 1,
|
|
}
|
|
|
|
# Use one request to better inspect the metrics.
|
|
prompts = example_prompts[:1]
|
|
|
|
_ = vllm_model.generate_greedy(prompts, max_tokens)
|
|
for metric_name, is_expected in metric_name_to_expected_fn.items():
|
|
metric_val = getattr(
|
|
stat_logger.metrics,
|
|
metric_name).labels(**stat_logger.labels)._value.get()
|
|
assert is_expected(metric_val), (
|
|
f"the value of metric {metric_name} ({metric_val}) "
|
|
"does not meet expectation")
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [10])
|
|
@pytest.mark.parametrize("log_interval", [1, 3, 5, 7])
|
|
def test_metric_spec_decode_interval(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
log_interval: int,
|
|
) -> None:
|
|
k = 5
|
|
|
|
engine_args = EngineArgs(
|
|
model=model,
|
|
dtype=dtype,
|
|
disable_log_stats=False,
|
|
gpu_memory_utilization=0.4,
|
|
speculative_config={
|
|
"model": model,
|
|
"num_speculative_tokens": k,
|
|
},
|
|
enforce_eager=True,
|
|
)
|
|
|
|
engine = LLMEngine.from_engine_args(engine_args)
|
|
|
|
try:
|
|
|
|
engine.add_request(
|
|
"request-id-0",
|
|
example_prompts[0],
|
|
SamplingParams(max_tokens=max_tokens),
|
|
)
|
|
|
|
# set log internal
|
|
stat_logger = engine.stat_loggers['prometheus']
|
|
stat_logger.local_interval = log_interval
|
|
|
|
# prefill
|
|
engine.step()
|
|
|
|
# wait for 5 seconds to ensure that spec decode metrics
|
|
# get triggered in first decode step
|
|
time.sleep(5)
|
|
|
|
# first decode step should trigger async collection of metrics
|
|
engine.step()
|
|
|
|
# wait one second to allow H2D transfer to finish
|
|
time.sleep(1)
|
|
|
|
# second decode step should now be able to collect the spec
|
|
# decode stats and the request should also be finished
|
|
engine.step()
|
|
|
|
# must have finisehd now
|
|
assert not engine.has_unfinished_requests()
|
|
|
|
# wait to ensure logging occurs
|
|
time.sleep(log_interval)
|
|
|
|
# force logging
|
|
engine.step()
|
|
|
|
# Note that the purpose of this test is to verify spec decode
|
|
# metrics instead of functional correctness, so the expected values
|
|
# are intended to be loose.
|
|
metric_name_to_expected_fn = {
|
|
"gauge_spec_decode_draft_acceptance_rate": lambda v: 0 <= v <= 1,
|
|
"gauge_spec_decode_efficiency": lambda v: 0 <= v <= 1,
|
|
"counter_spec_decode_num_accepted_tokens": lambda v: 0 <= v <= k,
|
|
"counter_spec_decode_num_draft_tokens": lambda v: v == k,
|
|
"counter_spec_decode_num_emitted_tokens":
|
|
lambda v: 0 <= v <= k + 1,
|
|
}
|
|
|
|
for metric_name, is_expected in metric_name_to_expected_fn.items():
|
|
metric_val = getattr(
|
|
stat_logger.metrics,
|
|
metric_name).labels(**stat_logger.labels)._value.get()
|
|
assert is_expected(metric_val), (
|
|
f"the value of metric {metric_name} ({metric_val}) "
|
|
"does not meet expectation")
|
|
|
|
finally:
|
|
del engine
|
|
cleanup_dist_env_and_memory()
|
|
|
|
|
|
def assert_metrics(model: str, engine: LLMEngine, disable_log_stats: bool,
|
|
num_requests: int) -> None:
|
|
if disable_log_stats:
|
|
with pytest.raises(AttributeError):
|
|
_ = engine.stat_loggers
|
|
else:
|
|
assert (engine.stat_loggers
|
|
is not None), "engine.stat_loggers should be set"
|
|
# Ensure the count bucket of request-level histogram metrics matches
|
|
# the number of requests as a simple sanity check to ensure metrics are
|
|
# generated
|
|
labels = {'model_name': model}
|
|
request_histogram_metrics = [
|
|
"vllm:e2e_request_latency_seconds",
|
|
"vllm:request_prompt_tokens",
|
|
"vllm:request_generation_tokens",
|
|
"vllm:request_params_n",
|
|
"vllm:request_params_max_tokens",
|
|
]
|
|
for metric_name in request_histogram_metrics:
|
|
metric_value = REGISTRY.get_sample_value(f"{metric_name}_count",
|
|
labels)
|
|
assert (
|
|
metric_value == num_requests), "Metrics should be collected"
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [16])
|
|
def test_engine_log_metrics_ray(
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
) -> None:
|
|
# This test is quite weak - it only checks that we can use
|
|
# RayPrometheusStatLogger without exceptions.
|
|
# Checking whether the metrics are actually emitted is unfortunately
|
|
# non-trivial.
|
|
|
|
# We have to run in a Ray task for Ray metrics to be emitted correctly
|
|
@ray.remote(num_gpus=1)
|
|
def _inner():
|
|
|
|
class _RayPrometheusStatLogger(RayPrometheusStatLogger):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
self._i = 0
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def log(self, *args, **kwargs):
|
|
self._i += 1
|
|
return super().log(*args, **kwargs)
|
|
|
|
engine_args = EngineArgs(
|
|
model=model,
|
|
dtype=dtype,
|
|
disable_log_stats=False,
|
|
)
|
|
engine = LLMEngine.from_engine_args(engine_args)
|
|
logger = _RayPrometheusStatLogger(
|
|
local_interval=0.5,
|
|
labels=dict(model_name=engine.model_config.served_model_name),
|
|
vllm_config=engine.vllm_config)
|
|
engine.add_logger("ray", logger)
|
|
for i, prompt in enumerate(example_prompts):
|
|
engine.add_request(
|
|
f"request-id-{i}",
|
|
prompt,
|
|
SamplingParams(max_tokens=max_tokens),
|
|
)
|
|
while engine.has_unfinished_requests():
|
|
engine.step()
|
|
assert logger._i > 0, ".log must be called at least once"
|
|
|
|
ray.get(_inner.remote())
|