vllm/tests/distributed/test_custom_all_reduce.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

118 lines
4.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import os
import random
import pytest
import ray
import torch
import torch.distributed as dist
from vllm.distributed.communication_op import ( # noqa
tensor_model_parallel_all_reduce)
from vllm.distributed.parallel_state import (get_tensor_model_parallel_group,
get_tp_group, graph_capture)
from ..utils import (ensure_model_parallel_initialized,
init_test_distributed_environment, multi_process_parallel)
random.seed(42)
test_sizes = [random.randint(1024, 2048 * 1024) for _ in range(8)]
for i, v in enumerate(test_sizes):
test_sizes[i] -= v % 8
@ray.remote(num_gpus=1, max_calls=1)
def graph_allreduce(tp_size, pp_size, rank, distributed_init_port):
del os.environ["CUDA_VISIBLE_DEVICES"]
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
init_test_distributed_environment(tp_size, pp_size, rank,
distributed_init_port)
ensure_model_parallel_initialized(tp_size, pp_size)
group = get_tensor_model_parallel_group().device_group
# A small all_reduce for warmup.
# this is needed because device communicators might be created lazily
# (e.g. NCCL). This will ensure that the communicator is initialized
# before any communication happens, so that this group can be used for
# graph capture immediately.
data = torch.zeros(1)
data = data.to(device=device)
torch.distributed.all_reduce(data, group=group)
torch.cuda.synchronize()
del data
# we use the first group to communicate once
# and the second group to communicate twice
# and so on
# this is used to demonstrate that each group can
# communicate independently
num_communication = rank // tp_size + 1
for sz in test_sizes:
for dtype in [torch.float32, torch.float16, torch.bfloat16]:
with graph_capture(device=device) as graph_capture_context:
# use integers so result matches NCCL exactly
inp1 = torch.randint(1,
16, (sz, ),
dtype=dtype,
device=torch.cuda.current_device())
inp2 = torch.randint(1,
16, (sz, ),
dtype=dtype,
device=torch.cuda.current_device())
torch.cuda.synchronize()
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph,
stream=graph_capture_context.stream):
for i in range(num_communication):
out1 = tensor_model_parallel_all_reduce(inp1)
# the input buffer is immediately modified to test
# synchronization
dist.all_reduce(inp1, group=group)
out2 = tensor_model_parallel_all_reduce(inp2)
dist.all_reduce(inp2, group=group)
graph.replay()
torch.testing.assert_close(out1, inp1)
torch.testing.assert_close(out2, inp2)
@ray.remote(num_gpus=1, max_calls=1)
def eager_allreduce(tp_size, pp_size, rank, distributed_init_port):
del os.environ["CUDA_VISIBLE_DEVICES"]
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
init_test_distributed_environment(tp_size, pp_size, rank,
distributed_init_port)
# we use the first group to communicate once
# and the second group to communicate twice
# and so on
# this is used to demonstrate that each group can
# communicate independently
num_communication = rank // tp_size + 1
sz = 1024
fa = get_tp_group().ca_comm
inp = torch.ones(sz, dtype=torch.float32, device=device)
out = inp
for _ in range(num_communication):
out = fa.all_reduce(out, registered=False)
torch.testing.assert_close(out, inp * (tp_size**num_communication))
inp = torch.ones(sz * 4, dtype=torch.bfloat16, device=device)
out = inp
for _ in range(num_communication):
out = fa.all_reduce(out, registered=False)
torch.testing.assert_close(out, inp * (tp_size**num_communication))
@pytest.mark.parametrize("tp_size", [2])
@pytest.mark.parametrize("pipeline_parallel_size", [1, 2])
@pytest.mark.parametrize("test_target", [eager_allreduce, graph_allreduce])
def test_custom_allreduce(tp_size, pipeline_parallel_size, test_target):
world_size = tp_size * pipeline_parallel_size
if world_size > torch.cuda.device_count():
pytest.skip("Not enough GPUs to run the test.")
multi_process_parallel(tp_size, pipeline_parallel_size, test_target)