Aaron Pham 21063c11c7
[CI/Build] drop support for Python 3.8 EOL (#8464)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2024-11-06 07:11:55 +00:00

237 lines
9.1 KiB
Python

import math
import torch
from vllm.platforms import current_platform
from .utils import (dense_to_crow_col, get_head_sliding_step,
get_sparse_attn_mask)
IS_COMPUTE_8_OR_ABOVE = current_platform.has_device_capability(80)
if IS_COMPUTE_8_OR_ABOVE:
from .blocksparse_attention_kernel import blocksparse_flash_attn_varlen_fwd
class LocalStridedBlockSparseAttn(torch.nn.Module):
def __init__(
self,
n_heads,
max_seqlen,
local_blocks,
vert_stride,
block_size,
device=None,
dtype=None,
homo_head=False,
active_head_range=None,
q_block_size=None,
use_spda=None,
):
super().__init__()
if use_spda is None:
use_spda = current_platform.is_rocm() or \
current_platform.is_cpu() or not \
IS_COMPUTE_8_OR_ABOVE
device = device or (torch.cuda.current_device()
if current_platform.is_cuda_alike() else "cpu")
device = torch.device(device)
# NOTE: vllm CPU backend support BF16 instead of FP16.
dtype = dtype or (torch.bfloat16 if IS_COMPUTE_8_OR_ABOVE
or device.type == "cpu" else torch.half)
self.n_heads = n_heads
self.max_seqlen = max_seqlen
self.local_blocks = local_blocks
self.vert_stride = vert_stride
self.use_spda = use_spda
self.dtype = dtype
self.device = device
self.block_size = block_size
self.q_block_size = q_block_size
self.homo_head = homo_head
self.active_head_range = active_head_range
self.head_sliding_step = get_head_sliding_step(n_heads, vert_stride,
homo_head)
sparse_layout, sparse_pattern, self.dense_attn_mask = (
self.get_attn_pattern(dtype, device))
if q_block_size is not None and q_block_size != block_size:
if q_block_size > block_size:
assert q_block_size % block_size == 0
blocks_to_merge = q_block_size // block_size
shape = sparse_pattern.shape
sparse_pattern = sparse_pattern.view(shape[0], -1,
blocks_to_merge,
shape[-1])
sparse_pattern = sparse_pattern.sum(2)
sparse_layout = dense_to_crow_col(sparse_pattern)
else:
raise ValueError(
"Does not support smaller q_block_size. It will be slower."
)
self.sparse_layout = sparse_layout
def get_attn_pattern(self, dtype, device):
sparse_layout, sparse_pattern, dense_attn_mask = get_sparse_attn_mask(
self.n_heads,
self.max_seqlen,
self.max_seqlen,
dtype,
device,
block_size=self.block_size,
local_blocks=self.local_blocks,
vert_stride=self.vert_stride,
homo_head=self.homo_head,
return_dense=self.use_spda,
dense_mask_type="bias",
)
if (not self.homo_head) and (self.active_head_range is not None):
assert isinstance(self.active_head_range, tuple)
assert (len(self.active_head_range) == 2)
h_start, h_end = self.active_head_range
sparse_layout = tuple(x[h_start:h_end] for x in sparse_layout)
if self.use_spda:
dense_attn_mask = dense_attn_mask[h_start:h_end]
return sparse_layout, sparse_pattern, dense_attn_mask
def varlen_attn(self,
q,
k,
v,
cu_seqlens_k,
cu_seqlens_q=None,
sm_scale=None):
"""
q, k, v: shape = (num_tokens, num_heads_q/kv, head_size).
Support grouped attention, with `q[:, i*r:(i*r + r)]`
is correspondent to `k[:, i]`, where `r` is the q/k ratio.
cu_seqlens_k: shape=(batch_size + 1,),
indicating segment of samples,
e.g., `k[cu_seqlen[i]:cu_seqlne[i+1]]` is q of sample i
cu_seqlens_q: shape=(batch_size + 1, ).
Default None: same as cu_seqlens_k for prefilling or
[0, 1, .., batch_size] for decoding.
The only case you need to specify is when q is a mix of
prefilling and decoding.
sm_scale: softmax scale, default to 1/sqrt(head_size).
return: tensor of shape as q.
"""
assert (
IS_COMPUTE_8_OR_ABOVE
), "Requires compute capability of 8 or above (Ampere or newer) to use \
Triton kernel."
sm_scale = sm_scale or 1.0 / math.sqrt(q.size(-1))
return blocksparse_flash_attn_varlen_fwd(
q,
k,
v,
cu_seqlens_k,
cu_seqlens_q,
sm_scale,
self.sparse_layout,
block_size=self.block_size,
q_block_size=self.q_block_size,
max_seqlen=self.max_seqlen,
)
@staticmethod
def transpose_and_pad(x, cu_seqlens, maxlen, head_repeats=1):
"""
:param x: (total_tokens, n_heads, head_size)
:return: (batch, n_heads, length, head_size)
"""
x_padded = x.new_empty(
len(cu_seqlens) - 1, x.size(1), head_repeats, maxlen, x.size(2))
cu_seqlens = cu_seqlens.cpu()
for i, (s, e) in enumerate(zip(cu_seqlens[:-1], cu_seqlens[1:])):
x_padded[i, :, :, :e - s].copy_(x[s:e].transpose(0,
1).unsqueeze(1))
return x_padded.flatten(1, 2)
@staticmethod
def transpose_and_unpad(x_padded, cu_seqlens):
"""
:param x_padded: (batch, n_heads, length, head_size)
:return: (total_tokens, n_heads, head_size)
"""
cu_seqlens = cu_seqlens.cpu()
total_n_tokens = cu_seqlens[-1]
x = x_padded.new_empty(total_n_tokens, x_padded.size(1),
x_padded.size(3))
for i, (s, e) in enumerate(zip(cu_seqlens[:-1], cu_seqlens[1:])):
x[s:e].copy_(x_padded[i, :, :e - s].transpose(0, 1))
return x
def spda(self, q, k, v, cu_seqlens_k, cu_seqlens_q=None, sm_scale=None):
"""For CPU, V100 or other older GPUs.
NOTE: torch SPDA supports nested tensor,
but seems extremely slow. Choose to pad instead.
"""
assert (cu_seqlens_q is None or
(cu_seqlens_q
== cu_seqlens_k).all()), "Can only handle prompt with SPDA."
assert q.size(0) == k.size(0), "can only handle prompt with SPDA."
assert q.size(1) % k.size(1) == 0
q_k_ratio = q.size(1) // k.size(1)
sm_scale = sm_scale or 1.0 / math.sqrt(q.size(-1))
cu_seqlens = cu_seqlens_k.cpu()
maxlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
if (self.dense_attn_mask.dtype != q.dtype
or self.dense_attn_mask.device != q.device):
_, _, self.dense_attn_mask = self.get_attn_pattern(
q.dtype, q.device)
attn_mask = self.dense_attn_mask[None, :, :maxlen, :maxlen]
q2 = self.transpose_and_pad(q, cu_seqlens, maxlen, 1)
k2, v2 = (self.transpose_and_pad(x, cu_seqlens, maxlen, q_k_ratio)
for x in [k, v])
spda_output = torch.nn.functional.scaled_dot_product_attention(
q2, k2, v2, attn_mask=attn_mask, scale=sm_scale)
return self.transpose_and_unpad(spda_output, cu_seqlens)
def forward(self, q, k, v, cu_seqlens_k, cu_seqlens_q=None, sm_scale=None):
"""Dispatch to `varlen_attn` (Ampere or newer) or
`self.spda`(cpu, Volta, Turing or older)based on
the type of device used and cuda compute capability.
q, k, v: shape = (num_tokens, num_heads_q/kv, head_size).
Support grouped attention, with `q[:, i*r:(i*r + r)]`
is correspondent to `k[:, i]`, where `r` is the q/k ratio.
cu_seqlens_k: shape=(batch_size + 1,), indicating segment of samples,
e.g., `k[cu_seqlen[i]:cu_seqlne[i+1]]` is q of sample i
cu_seqlens_q: shape=(batch_size + 1, ).
Default None: same as cu_seqlens_k for prefilling or
[0, 1, .., batch_size] for decoding.
The only case you need to specify
is when q is a mix of prefilling
and decoding.
sm_scale: softmax scale, default to 1/sqrt(head_size).
return: tensor of shape as q.
"""
assert k.dim() == 3
if self.use_spda:
return self.spda(
q,
k,
v,
cu_seqlens_k,
cu_seqlens_q=cu_seqlens_q,
sm_scale=sm_scale,
)
return self.varlen_attn(q,
k,
v,
cu_seqlens_k,
cu_seqlens_q=cu_seqlens_q,
sm_scale=sm_scale)